Introduction to Cryptography
CS 355
Lecture 12

The RC4 Stream Cipher
Review

• One Time Pad (OTP) has perfect secrecy
 – requires key as long as plaintext
• Stream cipher approximates OTP by using PRNG
• A PRNG expands a short random seed into a long string that “looks random”
• A PRNG-based stream cipher has fundamental weaknesses
 – same stream cannot be used twice
 – highly malleable
The RC4 Stream Cipher

- A proprietary cipher owned by RSA, designed by Ron Rivest in 1987.
- Simple and effective design.
- Variable key size, byte-oriented stream cipher.
- Widely used (web SSL/TLS, wireless WEP).
The RC4 Cipher: Encryption

- The cipher internal state consists of
 - a 256-byte array S, which contains a permutation of 0 to 255
 - total number of possible states is $256! \approx 2^{1700}$
 - two indexes: i, j

\[
i = j = 0
\]

Loop

\[
i = (i + 1) \pmod{256}
\]
\[
j = (j + S[i]) \pmod{256}
\]
\[
swap(S[i], S[j])
\]
\[
output (S[i] + S[j]) \pmod{256}
\]
End Loop
RC4 Initialization

- Generate the initial permutation from a key k; maximum key length is 2048 bits
- First divide k into L bytes
- Then

  ```
  for i = 0 to 255 do
      S[i] = i
  j = 0
  for i = 0 to 255 do
      j = (j + S[i] + k[i mod L]) (mod 256)
      swap (S[i], S[j])
  ```
RC4 Cryptanalysis

- Known weaknesses:
 - Problem with init
 - the first byte generated by RC4 leaks information about individual key bytes.
 - best to drop first 256 bytes of output
802.11 Security

• Used between a Wireless Access Point and Wireless Ethernet Cards

• Existing security consists of two subsystems
 – A data encapsulation technique called Wired Equivalent Privacy (WEP)
 – An authentication algorithm called Shared Key Authentication

• Goals
 – Create the privacy achieved by a wired network
 – Simulate physical access control by denying access to unauthenticated stations
WEP Encapsulation Summary:

- A master key shared between the end points
- Encryption Algorithm = RC4
- Per-packet encryption key = 24-bit IV concatenated to a master key
- WEP allows IV to be reused with any frame
- Data integrity provided by CRC-32 of the plaintext data (the “ICV”)
- Data and ICV are encrypted under the per-packet encryption key
What Went Wrong in WEP?

• The space of IV is too small & IV is sent in clear.

• With two messages encrypted using the same IV, one can recover the key stream.

• The attack is made much easier by chosen plaintext attacks, which can be carried out in the environment where WEP is used.
Ways to Accelerate the Attack

– Send spam into the network: no pattern recognition required!
– Get the victim to send e-mail to you
 • The AP creates the plaintext for you!
– Decrypt packets from one Station to another via an Access Point
 • If you know the plaintext on one leg of the journey, you can recover the key stream immediately on the other
– Etc., etc., etc.
Coming Attractions …

• Block Ciphers, DES

• Recommended reading for next lecture:
 – Trappe & Washington: 4.1, 4.2