Introduction to Cryptography CS 355

Lecture 11

Fermat & Euler Theorems

Residue Classes

- Given positive integer n, congruence modulo n is an equivalence relation.
- This relation partition all integers into equivalent classes; we denote the equivalence class containing the number x to be [x]_n, or [x] when n is clear from the context
- These classes are called residue classes modulo n
- E.g., $[1]_7 = [8]_7 = \{..., -13, -6, 1, 8, 15, 22, ...\}$

Modular Arithmetic in \mathbf{Z}_n

- Define Z_n as the set of residue classes modulo n
 Z₇ = {[0], [1], [2], ..., [6]}
- Define two binary operators + and \times on \mathbf{Z}_n
- Given [x], [y] in Z_n , [x] + [y] = [x+y], [x] × [y] = [xy]
- E.g., in Z_{7:} [3]+[4] = [0], [0]+[2] = [2]+[0] = 2,
 [5]+[6] = 4
- Compute the table for Z₄

Properties of Modular Addition and Multiplication

- Let n be a positive integer and Z_n be the set of residue classes modulo n. For all a, b, $c \in Z_n$
- 1. a + b = b + a
- 2. (a+b)+c = a+(b+c)
- 3. a + [0] = a
- 4. [x] + [-x] = [0]
- 5. $a \times b = b \times a$
- 6. $(a \times b) \times c = a \times (b \times c)$
- 7. $a \times (b+c) = a \times b + a \times c$

8. a×[1] = [a]

addition is commutative addition is associative exists addition identity exists additive inverse multiplication is commutative multiplication is associative mult. distributive over add. exists multiplicative identity

Multiplicative Inverse

- Theorem: [x]_n has a multiplicative inverse if and only if gcd(x,n) = 1
- We use Z_n^* to denote the set of all residue classes that have a multiplicative inverse.
- **Z**_n^{*} is closed under multiplication.

The Euler Phi Function

Definition

Given an integer n, $\Phi(n) = |Z_n^*|$ is the number of all numbers a such that 0 < a < n and a is relatively prime to n (i.e., gcd(a, n)=1).

Theorem:

If gcd(m,n) = 1, $\Phi(mn) = \Phi(m) \Phi(n)$

The Euler Phi Function

Theorem: Formula for
$$\Phi(n)$$

Let p be prime, e, m, n be positive integers
1) $\Phi(p) = p-1$
2) $\Phi(p^e) = p^e - p^{e-1}$
3) If $n = p_1^{e_1} p_2^{e_2} ... p_k^{e_k}$ then
 $\Phi(n) = n(1 - \frac{1}{p_1})(1 - \frac{1}{p_2})...(1 - \frac{1}{p_k})$

Fermat's Little Theorem

Fermat's Little Theorem

If *p* is a prime number and *a* is a natural number that is not a multiple of *p*, then

 $a^{p-1} \equiv 1 \pmod{p}$

Proof idea:

gcd(a, p) = 1, then the set { i*a mod p} 0< i < p is a permutation of the set {1, ..., p-1}.(otherwise we have 0<n<m<p s.t. ma mod p = na mod p

p| (ma - na) ⇒ p | (m-n), where 0<m-n < p) a * 2a * ...*(p-1)a = (p-1)! a^{p-1} ≡ (p-1)! (mod p) Since gcd((p-1)!, p) = 1, we obtain $a^{p-1} \equiv 1 \pmod{p}$

Euler's Theorem

Euler's Theorem

Given integer n > 1, such that gcd(a, n) = 1 then $a^{\Phi(n)} \equiv 1 \pmod{n}$

Corollary

Given integer n > 1, such that gcd(a, n) = 1 then $a^{\Phi(n)-1} \mod n$ is a multiplicative inverse of a mod n.

Corollary

Given integer n > 1, x, y, and a positive integers with gcd(a, n) = 1. If $x \equiv y \pmod{\Phi(n)}$, then $a^x \equiv a^y \pmod{n}$.

Consequence of Euler's Theorem

Basic Principle

Given a,n,x,y with $n \ge 1$ and gcd(a,n)=1, if $x \equiv y \pmod{\phi(n)}$, then

 $a^x \equiv a^y \pmod{n}$

Proof idea: $a^{x} = a^{k\phi(n) + y} = a^{y} (a^{\phi(n)})^{k}$ by applying Euler's theorem we obtain $a^{e} \equiv a^{f} \pmod{p}$

Coming Attractions ...

- The RC4 Stream Cipher
- Recommended reading for next lecture:
 - None

