Introduction to Cryptography CS 355

Lecture 9

One Time Pad

One-Time Pad

- Basic Idea: Extend Vigenère cipher so that the key is as long as the plaintext
 - No repeat, cannot be broken by finding key length + frequency analysis
- Key is a random string that is at least as long as the plaintext
- Encryption is similar to Vigenère

One-Time Pad

Plaintext space = Ciphtertext space = Keyspace = $(Z_m)^n$ Key is chosen randomly Plaintext $X = (x_1 x_2 \dots x_n)$ Key $K = (k_1 k_2 ... k_n)$ $Y = (y_1 \ y_2 \ \dots \ y_n)$ $e_k(X) = (x_1 + k_1 \ x_2 + k_2 \dots x_n + k_n) \mod m$ $d_k(Y) = (y_1 + k_1 \ y_2 + k_2 \dots y_n + k_n) \mod m$

How Good is One-Time Pad?

- Intuitively, it is secure ...
- The key is random, so the ciphertext is completely random

Shannon (Information-Theoretic) Security

- Basic Idea: Ciphertext should provide no "information" about Plaintext
 - Precise definition will be given towards the end of the course
- We also say such a scheme has perfect secrecy.
- One-time pad has perfect secrcy
 - E.g., suppose that the ciphertext is "Hello", can we say any plaintext is more likely than another plaintext?

What about the Ciphers We Have Studied

- Why Shift cipher does not have perfect secrecy?
- Why Vigenère cipher does not have perfect secrecy?

Key Randomness in One-Time Pad

- One-Time Pad uses a very long key, what if the key is not chosen randomly, instead, texts from, e.g., a book is used.
 - this is not One-Time Pad anymore
 - this does not have perfect secrecy
 - this can be broken easily
- The key in One-Time Pad should never be reused.
 - If it is reused, it is Two-Time Pad, and is insecure!

The "Bad News" Theorem for Perfect Secrecy

- Perfect secrecy \Rightarrow key-length \ge msg-length
- Difficult to use in practice

The Binary Version of One-Time Pad

Plaintext space = Ciphtertext space = Keyspace = {0,1}ⁿ Key is chosen randomly For example: • Plaintext is 11011011 • Key is 01101001

• Then ciphertext is 10110010

Bit Operators

- Bit AND
 - $0 \land 0 = 0$ $0 \land 1 = 0$ $1 \land 0 = 0$ $1 \land 1 = 1$
- Bit OR $0 \lor 0 = 0$ $0 \lor 1 = 1$ $1 \lor 0 = 1$ $1 \lor 1 = 1$
- Addition mod 2 (also known as Bit XOR) $0 \oplus 0 = 0$ $0 \oplus 1 = 1$ $1 \oplus 0 = 1$ $1 \oplus 1 = 0$
- Can we use operators other than Bit XOR for binary version of One-Time Pad?

Stream Ciphers

- In OTP, a key is described by a random bit string of length n
- Stream ciphers:
 - Idea: replace "rand" by "pseudo rand"
 - Use Pseudo Random Number Generator
 - PRNG: $\{0,1\}^s \rightarrow \{0,1\}^n$
 - expand a short (e.g., 128-bit) random seed into a long (e.g., 10⁶ bit) string that "looks random"
 - Secret key is the seed
 - $E_{seed}[M] = M \oplus PRNG(seed)$

Properties of Stream Ciphers

- Does not have perfect secrecy
 - security depends on PRNG
- PRNG must be "unpredictable"
 - given consecutive sequence of bits output (but not seed), next bit must be hard to predict
- Typical stream ciphers are very fast
- Used in many places, often incorrectly
 SSL(RC4), DVD (LFSR), WEP (RC4), etc.

Fundamental Weaknesses of Stream Ciphers

- If the same stream is used twice ever, then easy to break.
- Highly malleable
 - easy to change ciphertext so that plaintext changes in predictable, e.g., flip bits
- Weaknesses exist even if the PRNG is strong

Coming Attractions ...

- Linear Feedback Shift Register (LFSR)
- Recommended reading for next lecture:
 - Trappe & Washington: 2.10

