Introduction to Cryptography CS 355

Lecture 7

Mini Review & Enigma Machine

Answers to Quiz 1 problems

- What is the Caesar Cipher?
 - Shift cipher with shift 3
- Types of classical ciphers:
 - Transposition ciphers, e.g., Scytale cipher
 - Mono-alphabetical substitution ciphers
 - Poly-alphabetical substitution ciphers, e.g., the Vigenère cipher
 - Substituting more than one letter at a time, e.g., Playfair and ADFGX

Attacking Substitution Cipher

- Attacking substitution cipher under different adversary model
 - ciphertext only: frequency analysis
 - known plaintext: derive partial key, then use frequency analysis if necessary
 - chosen plaintext:
 - if can choose a string of 26+ letters, enumerate the alphabet
 - if not, then choose the ones that help cryptanalysis the most
 - chosen ciphertext: ?

The Vigenère Cipher

- Two phases in (ciphertext only) cryptanalysis
- Phase 1: finding out the key length
 - The Kasiski attack
 - Using index of coincidence to verify guesses of key length
- Phase 2: finding out the key (and thus the plaintext)
 - How to do this?
- What about known plaintext attack?

Review of Number Theory

- The extended Euclidian algorithm
 - given a, n, computes d=gcd(a,n) and integers s, t such that a²s+n²t = d
- Solving linear congrutement n
 - when gcd(a,n)=1, compute s such that a's+n? = 1, the solution is x=s?b mod n

Chinese Reminder Theorem (CRT)

Theorem

Let $n_1, n_2, ..., n_k$ be integers s.t. $gcd(n_i, n_j) = 1$ for any $i \neq j$. $x \equiv a_1 \mod n_1$ $x \equiv a_2 \mod n_2$

$$x \equiv a_k \mod n_k$$

There exists a unique solution modulo $n = n_1 n_2 ... n_k$

Proof of CRT

- Consider the function $\chi: Z_n \rightarrow Z_{n1} \times Z_{n2} \times ... \times Z_{nk}$ $\chi(x) = (x \mod n_1, ..., x \mod n_k)$
- We need to prove that χ is a bijection.
- For $1 \le i \le k$, define $m_i = n / n_i$, then $gcd(m_i, n_i) = 1$
- For $1 \le i \le k$, define $y_i = m_i^{-1} \mod n_i$
- Define function $\rho(a1,a2,...,ak) = \Sigma a_i m_i y_i \mod n$, this function inverts χ
 - $-a_im_iy_i \equiv a_i \pmod{n_i}$
 - $-a_im_iy_i \equiv 0 \pmod{n_i}$ where $i \neq j$

Example of CRT:

 $x \equiv 5 \pmod{7}$ $x \equiv 3 \pmod{11}$ $x \equiv 10 \pmod{13}$

- $n_1=7$, $n_2=11$, $n_3=13$, n=1001
- $m_1 = 143$, $m_2 = 91$, $m_3 = 77$
- $y_1 = 143^{-1} \mod 7 = 3^{-1} \mod 7 = 5$
- $y_2 = 91^{-1} \mod 11 = 3^{-1} \mod 11 = 4$
- $y_3 = 77^{-1} \mod 13 = 12^{-1} \mod 13 = 12$
- x = $(5 \times 143 \times 5 + 3 \times 91 \times 4 + 10 \times 77 \times 12) \mod 1001$ = 13907 mod 1001 = 894

History of the Enigma Machine

- Patented by Scherius in 1918
- Widely used by the Germans from 1926 to the end of second world war
- First successfully broken by Polish in the thirties by exploiting the repeating of the message key
- Then broken by the UK intelligence during the WW II

Using Enigma Machine

- A day key has the form
 - Plugboard setting: A/L-P/R-T/D-B/W-K/F-O/Y
 - Scrambler arrangement: 2-3-1
 - Scrambler starting position: Q-C-W
- Sender and receiver set up the machine the same way for each message
- Use of message key: a new scrambler starting position, e.g., PGH
 - first encrypt and send the message key, then set the machine to the new position and encrypt the message
 - initially the message key is encrypted twice

Permutations

- A **permutation** is a bijection from a finite set X onto itself.
- Each permutation has an inverse
- Given permutations P_1 , P_2 , their concatenation P_1P_2 is also a permutation; it is the permutation of first applying P_1 , then applying P_2
- The inverse of P_1P_2 is $P_2^{-1}P_1^{-1}$
- E.g., $P_1 = CBDEA$, $P_2=DAEBC$, then $P_1^{-1}=?, P_1P_2=?$

Mathematical Description

- Let P denote the plugboard transformation
- Let L,M,R denote the three motors
- Let U denote the reflector,
- Then the encryption function $E = PRMLUL^{-1}M^{-1}R^{-1}P^{-1}$
- Fact 1: $E[x] \neq x$
- Fact 2: E[E[x]] = x

How to break the Enigma machine?

- Recover 3 secrets
 - Internal connections for the 3 motors
 - Daily keys
 - Message keys
- Exploiting the repetition of message keys
 - In each ciphertext, letters in positions 1 & 4 are the same letter encrypted under the day key
 - One can thus write equations in which the variables
 - With 2 months of day keys and Enigma usage instructions, the Polish mathematician Rejewski to reconstruct the internal wiring

How to recover the day key?

- Catalog of "characteristics"
 - Main idea: separating the effect of the plugboard setting from the starting position of motors
 - determine the motor positions first
 - then attacking plugboard is easy
 - plugboard does not affect chain lengths in the permutation
- Using known plaintext attack
 - stereotypical structure of messages, easy to predict standard reports, retransmission of messages between multiple networks,

Lessons Learned From Breaking Engima

- Keeping a machine (i.e., a cipher algorithm) secret does not help
 - The Kerckhoff's principle
- Large number of keys are not sufficient
- Known plaintext attack was easy to mount
- Key management was the weakest link
- People were also the weakest link
- Never underestimate the opponent

Coming Attractions ...

- One-time Pad, Pseudo Random
 Number Generator
- Recommended reading for next lecture:
 - Trappe & Washington: 2.9, 2.10

