Introduction to Cryptography CS 355

Lecture 5

The Enigma Machine

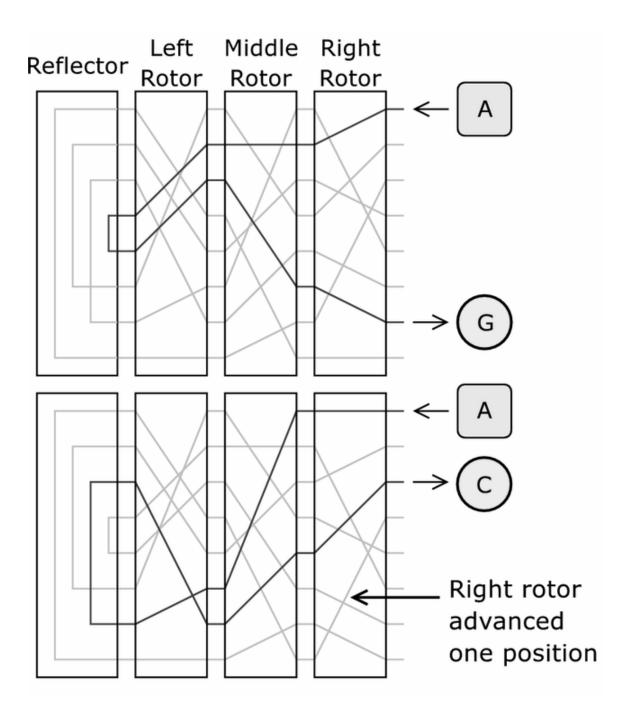
Lecture Outline

- Rotor machines
- The Enigma machine
- Breaking the Enigma
 machine

Rotor Machines

- Basic idea: if the key in Vigenere cipher is very long, then the attacks won't work
- Implementation idea: multiple rounds of substitution
- A machine consists of multiple cylinders
 - each cylinder has 26 states, at each state it is a substitution cipher
 - each cylinder rotates to change states according to different schedule

Rotor Machines


- A m-cylinder rotor machine has
 - 26^m different substitution ciphers
 - $26^3 = 17576$
 - $26^4 = 456,976$
 - $26^5 = 11,881,376$

Enigma Machine

- Plug board:
 - 6 pair of letters are swapped
- 3 scramblers (motors):
 - 3 scramblers can be used in any order:
- A reflector

Enigma Machine: Encrypting the same letter consecutively

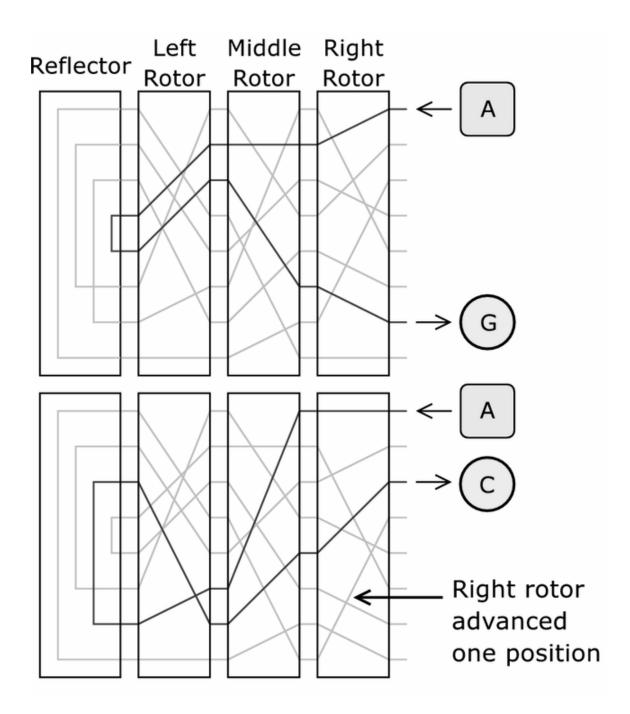
Enigma Machine: Size of Key Space

- Use 3 scramblers (motors): 17576
 substitutions
- 3 scramblers can be used in any order: 6 combinations
- Plug board: allowed 6 pairs of letters to be swapped before the encryption process started and after it ended.

 $\frac{26!}{14! \bullet 6! \bullet 64} = 100,391,791,500$

• Total number of keys $\approx 10^{16}$

Using Enigma Machine


- A day key has the form
 - Plugboard setting: A/L-P/R-T/D-B/W-K/F-O/Y
 - Scrambler arrangement: 2-3-1
 - Scrambler starting position: Q-C-W
- Sender and receiver set up the machine the same way for each message
- Use of message key: a new scrambler starting position, e.g., PGH
 - first encrypt and send the message key, then set the machine to the new position and encrypt the message
 - initially the message key is encrypted twice

History of the Enigma Machine

- Patented by Scherius in 1918
- Widely used by the Germans from 1926 to the end of second world war
- First successfully broken by Polish in the thirties by exploiting the repeating of the message key
- Then broken by the UK intelligence during the WW II

Permutations

- A **permutation** is a bijection from a finite set X onto itself.
- Each permutation has an inverse
- Given permutations P₁, P₂, their concatenation is also a permutation.
- The inverse of P_1P_2 is $P_2^{-1}P_1^{-1}$
- E.g., $P_1 = CBDEA$, $P_2=DAEBC$, then $P_2P_1=?$

Mathematical Description

- Let P denote the plugboard transformation
- Let L,M,R denote the three motors
- Let U denote the reflector,
- Then the encryption function $E = PRMLUL^{-1}M^{-1}R^{-1}P^{-1}$ or, $E = PTUT^{-1}P^{-1}$
- Fact 1: E[x] ≠ x
- Fact 2: E[E[x]] = x

How the Polish Break Enigma Machine

- They have a copy of the machine
 - need to find out day key to decrypt message key and then the message
- Main idea: separating the effect of the plugboard setting from the starting position of motors
 - determine the motor positions first
 - then attacking plugboard is easy
- Exploiting the repetition of message keys
 - In each ciphertext, letters in positions 1 & 4 are the same letter encrypted under the day key
 - The relationship is a permutation
 - plugboard does not affect chain lengths in the permutation

Summary

Recommended Reading for This Lecture

• The Code Book

- Chapters 3 and 4

Coming Attractions ...

- Extended Euclidean Algorithm
- The Chinese Remainder Theorem
- Recommended reading for next lecture:

- Trappe & Washington: 3.2 & 3.4

