# Introduction to Cryptography CS 355 Lecture 3

#### Elementary Number Theory (1)

### **Review of Last Lecture**

- Ciphertext-only attack:
- Known-plaintext attack:
- Chosen-plaintext:
- Chosen-ciphertext:
- Transposition cipher: Scytale
- Substitution cipher:
  - Shift cipher
  - general mono-alphabetical substitution cipher

## Lecture Outline

- Divisibility
- Prime and composite numbers
- The Fundamental theorem of arithmetic
- Great Common Divisor
- Modular operation
- Congruence relation



## Begin Math



## Divisibility

#### **Definition**

Given integers a and b, with  $a \neq 0$ , a divides b (denoted a|b) if  $\exists$  integer k, s.t. b = ak. a is called a **divisor** of b, and b a **multiple** of a.

# Proposition: (1) If a <sup>1</sup> 0, then a|0 and a|a. Also, 1|b for every b (2) If a|b and b|c, then a | c. (3) If a|b and a|c, then a | (sb + tc) for all integers s and t.

## Divisibility (cont.)

#### **Theorem (Division algorithm)**

Given integers a, b such that a>0, a<b then there exist two unique integers q and r,  $0 \le r < a$  s.t. b = aq + r.

Proof: Uniqueness of q and r: assume  $\exists$  q' and r' s.t b = aq' + r',  $0 \le r' < a$ , q' integer then aq + r=aq' + r'  $\Rightarrow$  a(q-q')=r'-r  $\Rightarrow$  q-q' = (r'-r)/a as  $0 \le r,r' < a \Rightarrow -a < (r'-r) < a \Rightarrow -1 < (r'-r)/a < 1$ So -1 < q-q' < 1, but q-q' is integer, therefore q = q' and r = r'

## Prime and Composite Numbers

#### **Definition**

An integer n > 1 is called a prime number if its positive divisors are 1 and n.

#### **Definition**

Any integer number n > 1 that is not prime, is called a composite number.

#### Example

Prime numbers: 2, 3, 5, 7, 11, 13, 17 ... Composite numbers: 4, 6, 25, 900, 17778, ...

## Decomposition in Product of Primes

#### **Theorem (Fundamental Theorem of Arithmetic)** Any integer number n > 1 can be written as a product of prime numbers (>1), and the product is unique if the numbers are written in increasing order.

$$n = p_1^{e_1} p_2^{e_2} \dots p_k^{e_k}$$

**Example**:  $84 = 2^2 \cdot 3 \cdot 7$ 

## Classroom Discussion Question (Not a Quiz)

• Are the total number of prime numbers finite or infinite?

## Greatest Common Divisor (GCD)

#### **Definition**

Given integers a > 0 and b > 0, we define gcd(a, b) = c, the greatest common divisor (GCD), as the greatest number that divides both a and b.

Example gcd(256, 100)=4

#### **Definition**

Two integers a > 0 and b > 0 are relatively prime if gcd(a, b) = 1.

#### Example

25 and 128 are relatively prime.

## GCD as a Linear Combination

#### Theorem

Given integers a, b > 0 and a > b, then d = gcd(a,b) is the least positive integer that can be represented as ax + by, x, y integer numbers.

Proof: Let t be the smallest positive integer s.t. t = ax + by. We have d | a and d | b  $\Rightarrow$  d | ax + by, so d | t, so d  $\leq$  t. We now show t = d. First t | a; otherwise, a = tu + r, 0 < r < t; r = a - ut = a - u(ax+by) = a(1-ux) + b(-uy), so we found another linear combination and r < t. Contradiction. Similarly t | b, so t is a common divisor of a and b, thus t = gcd (a, b) = d. So t = d. Example

 $gcd(100, 36) = 4 = 4 \times 100 - 11 \times 36 = 400 - 396$ 

## GCD and Multiplication

#### Theorem

Given integers a, b, m > 1. If gcd(a, m) = gcd(b, m) = 1, then gcd(ab, m) = 1

Proof idea: ax + ym = 1 = bz + tm Find u and v such that (ab)u + mv = 1

## GCD and Division

#### **Theorem**

Given integers a>0, b, q, r, such that b = aq + r, then gcd(b, a) = gcd(a, r).

*Proof:* Let gcd(b, a) = d and gcd(a, r) = e, this means

d | b and d | a, so d | b - aq, so d | r Since gcd(a, r) = e, we obtain d = e.

e | a and e | r, so e | aq + r, so e | b, Since gcd(b, a) = d, we obtain e = d.

Therefore d = e

## Finding GCD

**Using the Theorem:** Given integers a>0, b, q, r, such that b = aq + r, then gcd(b, a) = gcd(a, r). **Euclidian Algorithm** Find gcd (b, a) while a  $\neq 0$  do int/TimeTV and a TIEF /I Incommercent) decommercence are needed to see this  $r \leftarrow b \mod a$ b ← a a ← r *return* a

## Euclidian Algorithm Example

Find gcd(143, 110)

 $143 = 1 \times 110 + 33$  $110 = 3 \times 33 + 11$  $33 = 3 \times 11 + 0$ 

#### gcd(143, 110) = 11

## Modulo Operation

#### **Definition:**

$$a \mod n = r \Leftrightarrow \exists q, \text{s.t. } a = q \times n + r$$
  
where  $0 \le r \le n - 1$ 

#### Example:

7 mod 3 = 1 -7 mod 3 = 2

#### **Definition (Congruence):**

 $a \equiv b \mod n \Leftrightarrow a \mod n = b \mod n$ 

## Equivalence Relation

#### **Definition**

A binary relation R over a set X is a subset of X\times
X. We denote a relation (a,b) ∈ R as aRb.
•example of relations over integers?

#### **Definition**

A relation is an equivalence relation on a set X, if R is

Reflexive:aRa for all  $a \in R$ Symmetric:for all  $a, b \in R$ ,  $aRb \Rightarrow bRa$ Transitive:for all  $a,b,c \in R$ , aRb and  $bRc \Rightarrow aRc$ 

#### Example

"=" is an equivalence relation on the set of integers

## **Congruence Relation**

#### Theorem

Congruence mod n is an equivalence relation:

 $\begin{array}{ll} \textit{Reflexive:} & a \equiv a \pmod{n} \\ \textit{Symmetric:} & a \equiv b \pmod{n} \text{ iff } b \equiv a \mod n \\ \textit{Transitive:} & a \equiv b \pmod{n} \text{ and } b \equiv c \pmod{n} \Rightarrow \\ & a \equiv c \pmod{n} \end{array}$ 

## **Congruence Relation Properties**

#### Theorem

1) If 
$$a \equiv b \pmod{n}$$
 and  $c \equiv d \pmod{n}$ , then:  
 $a \pm c \equiv b \pm d \pmod{n}$  and  
 $ac \equiv bd \pmod{n}$ 

2) If 
$$a \equiv b \pmod{n}$$
 and  $d \mid n$  then:  
 $a \equiv b \pmod{d}$ 

## End Math



## Summary

- Divisibility
- Prime and composite numbers
- The Fundamental theorem of arithmetic
- Great Common Divisor
- Modular operation
- Congruence relation



## Recommended Reading for This Lecture

- Trappe & Washington:
  - 3.1, 3.3



## Coming Attractions ...

- The Vigenère Cipher
- Recommended reading for next lecture:
  - The Codebook Chapter 2
  - Trappe & Washington: 2.3

