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Lecture Outline for Symmetric Encryption

4 Symmetric Encryption

Readings: Sections 4.1–4.8 of Bellare&Rogaway

4.1 Symmetric encryption schemes

• A symmetric encryption scheme is given by SE = (K, E ,D), where

– K is the key generation algorithm.
K is randomized.

– E : Keys(SE)× {0, 1}∗ → {0, 1}∗ ∪ {⊥} is the encryption algorithm.
E may be randomized and/or stateful.

– D : Keys(SE)× {0, 1}∗ → {0, 1}∗ ∪ {⊥} is the decryption algorithm.
D is deterministic.

• The scheme SE = (K, E ,D) is said to provide correct encryption if for any key K ∈ Keys(SE), any

sequence of messages M1, · · · ,Mq ∈ {0, 1}∗, and any sequence of ciphertext C1
$← EK(M1), C2

$←
EK(M2), · · · , C1

$← EK(M1) that may arise in encrypting M1, · · · ,Mq, we have DK(Ci) = Mi for
each Ci 6= ⊥.

• The plaintext space of SE = (K, E ,D) is given by

M =
{

M
∣∣∣ Pr

[
K

$← K; C $← EK(M) : C 6= ⊥
]

= 1
}

• When encryption is randomized, encrypting the same message twice may get different ciphertexts.
This implies that the ciphertext space must be larger than the plaintext space, which often means that
length of ciphertext is longer then length of plaintext.

• Encryption may be stateful. This means that encryption is also dependent on a state that is initialized
in some pre-specified way. After each invocation of E , the state is updated. Typically, the state is a
counter.

• Encryption can be both randomized and stateful. But this is rare.

4.2 Some symmetric encryption schemes

Encryption modes:

• ECB mode: Given a block cipher E : K×{0, 1}n → {0, 1}n, using the ECB mode yields a stateless
and deterministic symmetric encryption scheme.

• CBC$ mode: CBC with random IV. Stateless, randomized encryption.



• CBCC mode: CBC with IV being a counter. Stateful, deterministic encryption. Note that counter is
not allowed to reuse. (The modeling of states in Figure 4.3 is problematic. A better way seems to be
to require the encryption function to provide an interface with two methods: initialization (with a key)
and encryption. There seems to be another bug with counter checking as well.)

• CTRC mode: Counter mode. Stateful, deterministic encryption.

• CTR$ mode: Counter mode with randomized counter. Stateless, randomized encryption.

4.3 Issues in privacy

• The main question: what is the security requirement for encryption?

• What is insecurity? Recover the key means insecure. Recover plaintext means insecure. Recover
partial information about plaintext also means insecure.

• What is “ideal encryption”? No adversary can gain non-negligible information about the plaintext
from a ciphertext.

– Compare with perfect secrecy.

– Normally we do leak some information about plaintext, e.g., length of the plaintext. Very ex-
pensive/clumsy to hide length as well.

• Goal: Given a ciphertext, no adversary can gain any information about the plaintext other than the
length of the plaintext. We need to formalize this.

• How to formalize this?

– A symmetric cipher has perfect secrecy if and only if it satisfies the following condition:

∀M0∈M∀M1∈M∀C0∈C (Pr [CT = C0 | PT = M0] = Pr [CT = C0 | PT = M1])

– A symmetric cipher is insecure if and only if

∃M0∈M∃M1∈M∃C0∈C (Pr [CT = C0 | PT = M0] 6= Pr [CT = C0 | PT = M1])

– A symmetric cipher is computationally insecure if and only if there is an adversary that can
output two messages M0,M1 of equal length, and when given a ciphertext C, can tell whether
it is the ciphertext of M0 or M1.

4.4 Indistinguishability under chosen-plaintext attack

• The IND-CPA game: The game is between the Challenger and an adversary.

1. The Challenger chooses K
$← K.

2. The adversary chooses two equal-length messages M0 and M1, and sends them to the Chal-
lenger.

3. The Challenger chooses b
$← {0, 1}, and sends C

$← EK(Mb) to the adversary.
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4. The adversary A outputs b′ ∈ {0, 1} and wins if b′ = b.

The advantage is defined to be |Pr[A wins ]− 0.5|.
If the advantage is small, it means that the adversary cannot distinguish whether a ciphertext is the
encryption of M0 or the encryption of M1, even if M0 and M1 are chosen by the adversary

• Definition in the notes: Consider two experiments:

– Expind-cpa-1
SE (A) : { K

$← K; d
$← AEK(LR(·,·,1)); Return d }.

∗ where EK(LR(·, ·, b)) is the Left-or-right encryption oracle, defined as follows
if |M0| 6= |M1| then return ⊥, else returns EK(Mb)

– Expind-cpa-0
SE (A) : { K

$← K; d
$← AEK(LR(·,·,0)); Return d }.

The IND-CPA advantage of A is defined as

Advind-cpa
SE (A) = Pr

[
Expind-cpa-1

SE (A) = 1
]
− Pr

[
Expind-cpa-0

SE (A) = 1
]

– The choice of world is made only once.

• The IND-CPA game is formalized as the following experiment:

– Expind-cpa-cg
SE (A) : { b

$← {0, 1}; K $← K; b′ $← AEK(LR(·,·,b)); Return b == b′ }.

∗ One difference from the informal description of the IND-CPA game is that here the adver-
sary is given an oracle encrypting either left or right, rather than just the ability to invoke it
only once.

∗ The advantage can be defined as Pr
[
Expind-cpa-cg

SE (A) = 1
]
− /1/2.

– We have the following:

Advind-cpa
SE (A) = 2 · Pr

[
Expind-cpa-cg

SE (A) = 1
]
− 1.

4.5 Example chosen-plaintext attacks

• Attack on ECB

• Any deterministic, stateless scheme is insecure

• CBC with counter IV is insecure

4.6 Semantic security

• SEM-CPA security: captures the idea that a secure encryption scheme should hide all computable
information about an unknown plaintext.

• Formalization of SEM-CPA using two experiments Expss-cpa-1
SE (A) and Expss-cpa-0

SE (A).

1. The Challenger picks K
$← K, initialize the cipher.

3



2. The adversary picks a message space Mi (an algorithm that samples a message from the space)
and sends to the Challenger.

3. The Challenger draws two random messages Mi and M ′
i from the space, makes sure that they

have the same length, encrypts Mi in Expss-cpa-1
SE (A) and M ′

i in Expss-cpa-0
SE (A), and returns

the ciphertext to the adversary.

4. Repeat the previous two steps for a total of q times.

5. The adversary outputs a function f and a value Y .

6. The adversary wins if and only if f(M1, · · · ,Mq) = Y .

The SEM-CPA advantage of A is defined as

Advsem-cpa
SE (A) = Pr

[
Expss-cpa-1

SE (A) = 1
]
− Pr

[
Expss-cpa-0

SE (A) = 1
]

• Theorem: IND-CPA security implies SEM-CPA security

4.7 Security of CTR modes

• Security of CTRC mode: Let F : K × {0, 1}n → {0, 1}n be a family of functions and let SE =
(K, E ,D) be the corresponding CTRC symmetric encryption scheme using F . Then given any A that
attacks the IND-CPA security of SE , there exists B that attacks the PRF security of F such that

Advind-cpa
SE (A) ≤ 2 ·Advprf

SE(B)

– First show that for any adversary A attacking SE [Func(n, n)],

Advind-cpa
SE[Func(n,n)](A) = 0.

This is true because SE [Func(n, n)] is essentially one-time pad.

– Then show that A can be used to construct B that attacks PRF security of F . The basic idea
is that when B gets a random function g, then no algorithm can have any advantage attacking
encryption done using g in CTRC mode, and when B gets a function drawn from F , A has
an advantage attacking the encryption. Then by betting on A’s success, one can distinguish a
random function from a function drawn from F .

• The PRF/PRP switching lemma (in Section 3.9 of the Bellare-Rogawar notes): Let E : K ×
{0, 1}n → {0, 1}n be a function family. Let A be an adversary that asks at most q oracle queries.
Then we have ∣∣∣Advprf

E (A)−Advprp
E (A)

∣∣∣ ≤ q(q − 1)
2n+1

• Security of CTR$ mode: Let F : K × {0, 1}n → {0, 1}n be a family of functions and let SE =
(K, E ,D) be the corresponding CTR$ symmetric encryption scheme using F . Then given any A that
attacks the IND-CPA security of SE that makes at most σ queries, there exists B that attacks the PRF
security of F such that

Advind-cpa
SE (A) ≤ 2 ·Advprf

SE(B) +
0.5σ2

2n
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4.8 Security of CBC with a random IV

• Security of CBC$ mode: Let E : K × {0, 1}n → {0, 1}n be a block cipher and let SE = (K, E ,D)
be the corresponding CBC$ symmetric encryption scheme using E. Then given any A that attacks the
IND-CPA security of SE that makes at most σ queries, there exists B that attacks the PRF security of
F such that

Advind-cpa
SE (A) ≤ 2 ·Advprf

SE(B) +
0.5σ2

2n

– First show that for any adversary A attacking CBC$[Func(n, n)],

Advind-cpa
CBC$[Func(n,n)](A) ≤ σ2

2n
.
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