Lecture Outline for Pseudorandom functions

3 Pseudorandom Functions

Readings: Sections 3.1–3.8 of Bellare&Rogaway

3.1 Function Families

- A function family is a map $F : K \times D \rightarrow R$.
 - K is the keyspace, D the domain, and R the range of F.
- The function $F_K : D \rightarrow R$ is defined by $F_K(X) = F(K, X)$. We call F_K an instance of F.
- Usually, $K = \{0, 1\}^k$, $D = \{0, 1\}^\ell$, and $R = \{0, 1\}^L$, where k is the key length, ℓ the input length, and L the output length.
- $K \leftarrow K$ means that K is uniformly randomly chosen from K. That $f \leftarrow F$ means that f is uniformly randomly chosen from F.
- A permutation is a bijection (i.e., a one-to-one onto map) whose domain and range are the same set.
- A block cipher is a family of permutations, e.g., DES: $\{0, 1\}^{56} \times \{0, 1\}^{64} \rightarrow \{0, 1\}^{64}$.

3.2 Random functions and permutations

- Func(D, R) is the family of all functions mapping D to R.
 - Perm(D) is the family of all permutations on D.
- Func(ℓ, L) is the family of all functions mapping $\{0, 1\}^\ell$ to $\{0, 1\}^L$;
 - Func(ℓ) is the family of all functions mapping $\{0, 1\}^\ell$ to $\{0, 1\}^\ell$;
 - and Perm(ℓ) is the family of all permutations on $\{0, 1\}^\ell$.
- The keyspace for Func(ℓ, L) is:
 $$\text{Keys(}\text{Func}(\ell, L)) = \{(Y_1, \ldots, Y_{2^\ell}) : Y_1, \ldots, Y_{2^\ell} \in \{0, 1\}^L\}$$
 - The size of this keyspace is $(2^L)^{2^\ell} = 2^{L \cdot 2^\ell}$, and the key length is $L \cdot 2^\ell$.
- A random function g mapping $\{0, 1\}^\ell$ to $\{0, 1\}^L$ is a random instance of Func(ℓ, L), i.e., $g \leftarrow \text{Func}(\ell, L)$.
 - A random function means that the function is chosen randomly. The function itself is deterministic.
- Dynamic view of a random function g, or how to implement a random function. Maintains a table of all points that have been queried. When a new point is queried, return a random answer and store it in the table. When a point in the table is queried, return the stored value.
• Look at Example 3.3.

• The keyspace for \(\text{Perm}(\ell) \) is:

\[
\text{Keys}(\text{Perm}(\ell)) = \left\{ (Y_1, \ldots, Y_{2\ell}) : Y_1, \cdots, Y_{2\ell} \in \{0, 1\}^\ell \text{ and } Y_1, \cdots, Y_{2\ell} \text{ are distinct} \right\}
\]

The keyspace has size \(2^{\ell!} \).

• How to implement a random permutation on \(\{0, 1\}^\ell \), i.e., a random instance of \(\text{Perm}(\ell) \)?

• For \(\pi \overset{\$}{\leftarrow} \text{Perm}(\ell) \), we have (example 3.5):

1. Fix \(X, Y \in \{0, 1\}^\ell \), then \(\Pr[\pi(X) = Y] = 2^{-\ell} \).
2. Fix \(X_1 \neq X_2 \in \{0, 1\}^\ell \) and \(Y_1 \neq Y_2 \in \{0, 1\}^\ell \), then \(\Pr[\pi(X_1) = Y_1 \mid \pi(X_2) = Y_2] = \frac{1}{2^{\ell-1}} \).

3.3 Pseudorandom functions

• A pseudorandom function is a family \(F \) of functions with the property that the input-output behavior of a random instance of the family is “computationally indistinguishable” from that of a random function.

No algorithm, with blackbox access to a function, can tell whether the function is randomly drawn from \(F \) or from the family of all functions over the domain and range.

• Consider the following scenario of distinguishing the following two worlds: one with a random function (i.e., \(g \overset{\$}{\leftarrow} \text{Func}(D, R) \)), the other with a function drawn at random from \(F \), a function family mapping \(D \) to \(R \).

• Consider an adversary \(A \) with oracle access to a function \(g \). An adversary is a probabilistic algorithm (Turing Machine).

• The prf-advantage of an adversary \(A \).

\[
\text{Adv}_{F}^{\text{prf}}(A) = \Pr[\text{Exp}_{F}^{\text{prf}-1}(A) = 1] - \Pr[\text{Exp}_{F}^{\text{prf}-0}(A) = 1]
\]

where in \(\text{Exp}_{F}^{\text{prf}-1} \), \(A \) is given a function drawn at random from \(F \), and in \(\text{Exp}_{F}^{\text{prf}-0} \), \(A \) is given a random function.

• Advantage depends on the resources. Consider three resources: (1) running time of the algorithm, (2) number of queries \(A \) makes, (3) total length of \(A \)’s queries.

• We say that a function family \(F \) is a “secure” PRF if, under certain resource restrictions, no adversary has a “significant” advantage.

• An alternative way of defining the advantage: a game between a Challenger and an adversary:

1. The Challenger chooses \(b \overset{\$}{\leftarrow} \{0, 1\} \), and let \(g \overset{\$}{\leftarrow} \text{Func}(D, R) \) if \(b = 0 \), and let \(g \overset{\$}{\leftarrow} F \) if \(b = 1 \).
2. The Challenger then interacts with the adversary \(A \), it evaluates \(g \) for the adversary at each point the adversary queries.
3. The adversary A outputs $b' \in \{0, 1\}$ and wins if $b' = b$.

The advantage is defined to be $|\Pr[A \text{ wins}] - 0.5|$.

Question: How is this advantage related to $\text{Adv}_{F}^{\text{prf}}(A)$?

3.4 Pseudorandom permutations

- **PRP under CPA:** Given a family F of permutations on D, consider an adversary that is given oracle access to a function g, which is either a random permutation on D or a random instance of F, the adversary is asked to tell whether g is taken from F.

Models chosen-plaintext attack against a cipher; however, the objective of the attack is to tell whether it is random.

- **PFP under CCA:** Similar to the CPA case, but the adversary has access to two oracles: g and g^{-1}.

Models chosen-ciphertext (and chosen-plaintext) attack against a cipher.

- **PRP-CCA implies PRP-CPA**

3.5 Modeling block ciphers

- Classically, key recovery attacks are considered against block ciphers. Security against key recovery attack is necessary, but insufficient for block cipher security.

- Block ciphers should be secure PRP under CCA.

- **Conjecture** the following is true for any adversary $A_{t,q}$ that runs in time at most t and asks at most q queries.

$$\text{Adv}_{\text{DES}}^{\text{prp-cpa}}(A_{t,q}) \leq c_1 \cdot \frac{t/T_{\text{DES}}}{2^{55}} + c_2 \cdot \frac{q}{2^{40}}$$

First term models brute-force attack, second one models linear cryptanalysis, the best known theoretical attack.

- **Conjecture** the following is true for any adversary $B_{t,q}$ that runs in time $\leq t$ and makes $\leq q$ queries:

$$\text{Adv}_{\text{AES}}^{\text{prp-cpa}}(B_{t,q}) \leq c_1 \cdot \frac{t/T_{\text{AES}}}{2^{128}} + c_2 \cdot \frac{q}{2^{128}}$$

3.6 Example Attacks

- **Example 3.10** Linear encryption.

- **Example 3.11** Given secure PRF $F : \{0, 1\}^k \times \{0, 1\}^\ell \to \{0, 1\}^L$, the function family $G : \{0, 1\}^k \times \{0, 1\}^\ell \to \{0, 1\}^{2L}$, defined as

$$G_K(x) = F_K(x) \parallel F_K(\bar{x}),$$

is not secure PRF.
3.7 Security against key recovery

- Define
 \[
 \text{Adv}^{kr}_F(B) = \Pr \left[K \leftarrow \text{Keys}(F) : B^{F_K}() = K \right]
 \]

- Proposition 1 \[3.14\] Let \(F : \mathcal{K} \times D \to R \) be a family of functions, and let \(B \) be a key-recovery adversary against \(F \) with running time at most \(t \) and making at most \(q \) queries, then there exists a PRF adversary \(A \) against \(F \) such that \(A \) has running time at most \(t \) plus the time for one evaluation of \(F \) and makes at most \(q + 1 \) queries, and

 \[
 \text{Adv}^{prf}_F(A) \geq \text{Adv}^{kr}_F(B) - \frac{1}{|R|}
 \]

 Furthermore if \(D = R \) and there also exists a PRP CPA adversary \(A \) against \(F \) such that

 \[
 \text{Adv}^{prf-cpa}_F(A) \geq \text{Adv}^{kr}_F(B) - \frac{1}{|D| - q}
 \]

- Example of a cipher that is secure against key recovery, but is intuitively insecure.

3.8 The birthday attack

- One can distinguish a family of permutations from a family of random functions by the birthday attack. Note that the goal of the attack is not finding collisions, but rather distinguishing a permutation from a random function.

- Basic idea: a permutation never maps two values into the same. A random function may do that with probability \(1/|R| \). Given a function, when one queries it about \(\sqrt{|R|} \) times, one would expect to see collision. If collision doesn’t occur, one can tell it is a permutation, rather than a random function.