CS655: Cryptography Jan 31, 2007

Lecture Outline for Pseudorandom functions

3 Pseudorandom Functions

Readings: Sections 3.1-3.8 of Bellare&Rogaway

3.1

3.2

Function Families

A function familyisamap F : K x D — R.

K is the keyspace, D the domain, and R the range of F'.

The function Fi : D — R is defined by Fix(X) = F(K, X). We call Fi an instance of F'.

Usually, £ = {0,1}*, D = {0,1}*, and R = {0, 1}, where k is the key length, ¢ the input length,
and L the output length.

K & K means that K is uniformly randomly chosen from K. That f & P means that f is uniformly
randomly chosen from F'.

A permutation is a bijection (i.e., a one-to-one onto map) whose domain and range are the same set.

A block cipher is a family of permutations, e.g., DES: {0, 1}%° x {0,1}5% — {0, 1}%4.

Random functions and permutations

Func(D, R) is the family of all functions mapping D to R.

Perm(D) is the family of all permutations on D.

Func(/, L) is the family of all functions mapping {0, 1}¢ to {0, 1};
Func(¥) is the family of all functions mapping {0, 1} to {0, 1};
and Perm (/) is the family of all permutations on {0, 1}*.

The keyspace for Func(¢, L) is:
Keys(Func(¢,L)) = {(Yi,...,Yy) : Y1, -+, Yo € {0,1}F}
The size of this keyspace is (2L)2Z = 22 and the key length is L2°.

A random function g mapping {0,1}¢ to {0,1} is a random instance of Func(¢, L), ie., g ki
Func(¢, L).

A random function means that the function is chosen randomly. The function itself is deterministic.
Dynamic view of a random function g, or how to implement a random function. Maintains a table of

all points that have been queried. When a new point is queried, return a random answer and store it in
the table. When a point in the table is queried, returned the stored value.

3.3

Look at Example 3.3.

The keyspace for Perm(¥) is:
Keys(Perm({)) = {(Yl, oY) s Yy, ee- Yo € {0,1} and V7, - - -, Yy are distinct }

The keyspace has size 2¢!.

How to implement a random permutation on {0, 1}¢, i.e., a random instance of Perm(¢)?
For 7 & Perm(¢), we have (example 3.5):

1. Fix X,Y € {0,1}, then Pr[n(X) = Y] = 27"

2. Fix X1 # X5 € {0,1} and Y7 # Y5 € {0,1}%, then Pr [7(X1) = V1 | 7(X3) = Vo] = 5.

Pseudorandom functions

A pseudorandom function is a family F' of functions with the property that the input-output behavior
of a random instance of the family is “computationally indistinguishable” from that of a random
function.

No algorithm, with blackbox access to a function, can tell whether the function is randomly drawn
from F' or from the family of all functions over the domain and range.

Consider the following scenario of distinguishing the following two worlds: one with a random func-

tion (i.e., g . Func(D, R)), the other with a function drawn at random from F, a function family
mapping D to R.

Consider an adversary A with oracle access to a function g. An adversary is a probabilistic algorithm
(Turing Machine).

The prf-advantage of an adversary A.
Advarf(A) = Pr[Exp%f_l(A) =1] - Pr[Expgf_O(A) = 1]

where in Exp%rf_l, A is given a function drawn at random from F, and in Exp%rf'o, A is given a

random function.

Advantage depends on the resources. Consider three resources: (1) running time of the algorithm, (2)
number of queries A makes, (3) total length of A’s queries.

We say that a function family F'is a “secure” PRF if, under certain resource restrictions, no adversary
has a “significant” advantage.

An alternative way of defining the advantage: a game between a Challenger and an adversary:

1. The Challenger chooses b & {0,1}, and let ¢ & Func(D, R) if b =0, and let g S pite=1.

2. The Challenger then interacts with the adversary A, it evaluates g for the adversary at each point
the adversary queries.

3. The adversary A outputs b’ € {0,1} and wins if ' = b.

The advantage is defined to be | Pr[A wins | — 0.5].

Question: How is this advantage related to Advarf(A) ?

34

3.5

3.6

Pseudorandom permutations

PRP under CPA: Given a family F' of permutations on D, consider an adversary that is given oracle
access to a function g, which is either an random permutation on D or a random instance of F', the
adversary is asked to tell whether g is taken from F.

Models chosen-plaintext attack against a cipher; however, the objective of the attack is to tell whether
it is random.

PFP under CCA: Similar to the CPA case, but the adversary has access to two oracles: g and g~ !.

Models chosen-ciphertext (and chosen-plaintext) attack against a cipher.

PRP-CCA implies PRP-CPA

Modeling block ciphers

Classically, key recovery attacks are considered against block ciphers.

Security against key recovery attack is necessary, but insufficient for block cipher security.
Block ciphers should be secure PRP under CCA.

Conjecture the following is true for any adversary A; , that runs in time at most ¢ and asks at most g
queries.
- t/T;
prp-cpa DES q
Advppg™ (A S =2 4o o
First term models brute-force attack, second one models linear cryptanalysis, the best known theoret-
ical attack.

Conjecture the following is true for any adversary B; , that runs in time < ¢ and makes < g queries:

- t/T
prp-cpa AES q
Advy g™ (Brg) i 9128 €2" 5128

Example Attacks

Example 3.10 Linear encryption.

Example 3.11 Given secure PRF F : {0,1}* x {0,1}* — {0, 1}*, the function family G : {0, 1}* x
{0,1}¢ — {0,1}2%, defined as
Gk (r) = Fi(2)|| F (%),

is not secure PRF.

3.7

3.8

Security against key recovery

e Define

AdVY(B) = Pr | K & Keys(F) : BFx() = K

e Proposition 1 [3.14]Let F' : K x D — R be a family of functions, and let B be a key-recovery

adversary against F' with running time at most ¢ and making at most q queries, then there exists a PRF
adversary A against F' such that A has running time at most ¢ plus the time for one evaluation of F’
and makes at most ¢ + 1 queries, and

1

AdvD(A) > AdvK(B) — v

Furthermore if D = R and there also exists a PRP CPA adversary A against F' such that

] 1
AdvPTP(4) > AdVK(B) — B4

Example of a cipher that is secure against key recovery, but is intuitively insecure.

The birthday attack

One can distinguish a family of permutations from a family of random functions by the birthday attack.
Note that the goal of the attack is not finding collisions, but rather distinguishing a permutation from
a random function.

Basic idea: a permutation never maps two values into the same. A random function may do that with
probability 1/|R|. Given a function, when one queries it about /| R| times, one would expect to see
collision. If collision doesn’t occur, one can tell it is a permutation, rather than a random function.

