
CS655: Cryptography Jan 31, 2007

Lecture Outline for Pseudorandom functions

3 Pseudorandom Functions

Readings: Sections 3.1–3.8 of Bellare&Rogaway

3.1 Function Families

• A function family is a map F : K ×D → R.

K is the keyspace, D the domain, and R the range of F .

• The function FK : D → R is defined by FK(X) = F (K,X). We call FK an instance of F .

• Usually, K = {0, 1}k, D = {0, 1}`, and R = {0, 1}L, where k is the key length, ` the input length,
and L the output length.

• K
$← K means that K is uniformly randomly chosen from K. That f

$← F means that f is uniformly
randomly chosen from F .

• A permutation is a bijection (i.e., a one-to-one onto map) whose domain and range are the same set.

• A block cipher is a family of permutations, e.g., DES: {0, 1}56 × {0, 1}64 → {0, 1}64.

3.2 Random functions and permutations

• Func(D, R) is the family of all functions mapping D to R.

Perm(D) is the family of all permutations on D.

• Func(`, L) is the family of all functions mapping {0, 1}` to {0, 1}L;

Func(`) is the family of all functions mapping {0, 1}` to {0, 1}`;

and Perm(`) is the family of all permutations on {0, 1}`.

• The keyspace for Func(`, L) is:

Keys(Func(`, L)) =
{
(Y1, . . . , Y2`) : Y1, · · · , Y2` ∈ {0, 1}L

}

The size of this keyspace is (2L)2
`
= 2L2`

, and the key length is L2`.

• A random function g mapping {0, 1}` to {0, 1}L is a random instance of Func(`, L), i.e., g
$←

Func(`, L).

A random function means that the function is chosen randomly. The function itself is deterministic.

• Dynamic view of a random function g, or how to implement a random function. Maintains a table of
all points that have been queried. When a new point is queried, return a random answer and store it in
the table. When a point in the table is queried, returned the stored value.

• Look at Example 3.3.

• The keyspace for Perm(`) is:

Keys(Perm(`)) =
{

(Y1, . . . , Y2`) : Y1, · · · , Y2` ∈ {0, 1}` and Y1, · · · , Y2` are distinct
}

The keyspace has size 2`!.

• How to implement a random permutation on {0, 1}`, i.e., a random instance of Perm(`)?

• For π
$← Perm(`), we have (example 3.5):

1. Fix X,Y ∈ {0, 1}`, then Pr [π(X) = Y] = 2−`.

2. Fix X1 6= X2 ∈ {0, 1}` and Y1 6= Y2 ∈ {0, 1}`, then Pr [π(X1) = Y1 | π(X2) = Y2] = 1
2`−1

.

3.3 Pseudorandom functions

• A pseudorandom function is a family F of functions with the property that the input-output behavior
of a random instance of the family is “computationally indistinguishable” from that of a random
function.

No algorithm, with blackbox access to a function, can tell whether the function is randomly drawn
from F or from the family of all functions over the domain and range.

• Consider the following scenario of distinguishing the following two worlds: one with a random func-

tion (i.e., g
$← Func(D,R)), the other with a function drawn at random from F , a function family

mapping D to R.

• Consider an adversary A with oracle access to a function g. An adversary is a probabilistic algorithm
(Turing Machine).

• The prf-advantage of an adversary A.

Advprf
F (A) = Pr[Expprf-1

F (A) = 1]− Pr[Expprf-0
F (A) = 1]

where in Expprf-1
F , A is given a function drawn at random from F , and in Expprf-0

F , A is given a
random function.

• Advantage depends on the resources. Consider three resources: (1) running time of the algorithm, (2)
number of queries A makes, (3) total length of A’s queries.

• We say that a function family F is a “secure” PRF if, under certain resource restrictions, no adversary
has a “significant” advantage.

• An alternative way of defining the advantage: a game between a Challenger and an adversary:

1. The Challenger chooses b
$← {0, 1}, and let g

$← Func(D, R) if b = 0, and let g
$← F if b = 1.

2. The Challenger then interacts with the adversary A, it evaluates g for the adversary at each point
the adversary queries.

2

3. The adversary A outputs b′ ∈ {0, 1} and wins if b′ = b.

The advantage is defined to be |Pr[A wins]− 0.5|.

Question: How is this advantage related to Advprf
F (A)?

3.4 Pseudorandom permutations

• PRP under CPA: Given a family F of permutations on D, consider an adversary that is given oracle
access to a function g, which is either an random permutation on D or a random instance of F , the
adversary is asked to tell whether g is taken from F .

Models chosen-plaintext attack against a cipher; however, the objective of the attack is to tell whether
it is random.

• PFP under CCA: Similar to the CPA case, but the adversary has access to two oracles: g and g−1.

Models chosen-ciphertext (and chosen-plaintext) attack against a cipher.

• PRP-CCA implies PRP-CPA

3.5 Modeling block ciphers

• Classically, key recovery attacks are considered against block ciphers.

Security against key recovery attack is necessary, but insufficient for block cipher security.

• Block ciphers should be secure PRP under CCA.

• Conjecture the following is true for any adversary At,q that runs in time at most t and asks at most q
queries.

Advprp-cpa
DES (At,q) ≤ c1 ·

t/TDES
255

+ c2 · q

240

First term models brute-force attack, second one models linear cryptanalysis, the best known theoret-
ical attack.

• Conjecture the following is true for any adversary Bt,q that runs in time ≤ t and makes ≤ q queries:

Advprp-cpa
AES (Bt,q) ≤ c1 ·

t/TAES
2128

+ c2 · q

2128

3.6 Example Attacks

• Example 3.10 Linear encryption.

• Example 3.11 Given secure PRF F : {0, 1}k ×{0, 1}` → {0, 1}L, the function family G : {0, 1}k ×
{0, 1}` → {0, 1}2L, defined as

GK(x) = FK(x)‖FK(x̄),

is not secure PRF.

3

3.7 Security against key recovery

• Define
Advkr

F (B) = Pr
[
K

$← Keys(F) : BFK () = K
]

• Proposition 1 [3.14]Let F : K × D → R be a family of functions, and let B be a key-recovery
adversary against F with running time at most t and making at most q queries, then there exists a PRF
adversary A against F such that A has running time at most t plus the time for one evaluation of F
and makes at most q + 1 queries, and

Advprf
F (A) ≥ Advkr

F (B)− 1
|R|

Furthermore if D = R and there also exists a PRP CPA adversary A against F such that

Advprf-cpa
F (A) ≥ Advkr

F (B)− 1
|D| − q

• Example of a cipher that is secure against key recovery, but is intuitively insecure.

3.8 The birthday attack

• One can distinguish a family of permutations from a family of random functions by the birthday attack.
Note that the goal of the attack is not finding collisions, but rather distinguishing a permutation from
a random function.

• Basic idea: a permutation never maps two values into the same. A random function may do that with
probability 1/|R|. Given a function, when one queries it about

√
|R| times, one would expect to see

collision. If collision doesn’t occur, one can tell it is a permutation, rather than a random function.

4

