Lecture Outline for Review of Basic Number Theory¹

Algebra Basics

1. Group: Given a non-empty set G, and a binary operation \cdot over G. We say that (G, \cdot) is a group if the following holds:

Closure:	For every $a, b \in G$, $a \cdot b \in G$
Associativity:	For every $a, b, c \in G$, $(a \cdot b) \cdot c = a \cdot (b \cdot c)$.
Identity:	There exists an element $1 \in G$ such that for every $a \in G$, $a \cdot 1 = 1 \cdot a = a$
Invertibility:	For every $a \in G$ there exists unique $b \in G$ such that $a \cdot b = b \cdot a = 1$. The
-	element b is referred to as the <i>inverse</i> of the element a, and is denoted a^{-1} .

2. A group (G, \cdot) is called *abelian* (or commutative) if it satisfies the following property:

Commutative For every $a, b \in G$, $a \cdot b = b \cdot a$.

- 3. Given a group (G, \cdot) , we say (G', \cdot) is a subgroup of (G, \cdot) if $G' \subseteq G$ and (G', \cdot) is also group.
- 4. *Examples:* We use $\mathbb{Z}(\mathbb{Q}, \mathbb{R}, \text{resp.})$ to denote the set of all integers (rational numbers, real numbers, resp.), and $\mathbb{Z}^+(\mathbb{Q}^+, \mathbb{R}^+, \text{resp.})$ the set of all *positive* integers (rational numbers, real numbers, resp.)
 - $(\mathbb{Z}, +)$ is an abelian group;
 - (\mathbb{Z}, \times) is not a group.
 - $(\mathbb{Q}, +)$ is an abelian group, so is $(\mathbb{R}, +)$;
 - $(\mathbb{Q} \setminus \{0\}, \times)$ is an abelian group; so is $(\mathbb{R} \setminus \{0\}, \times)$
 - (\mathbb{Q}^+, \times) is an abelian group; it is a subgroup of $(\mathbb{Q} \{0\}, \times)$.
- 5. Lagrange's theorem: If (G', \cdot) is a subgroup of $((G, \cdot)$, and both G' and G are finite, then |G'| divides |G|.
- 6. Given group $\langle G, \cdot \rangle$ and an element $a \in G$, use $\langle a \rangle$ to denote the set $\{1, a, a^2, a^3, \cdots \}$.
 - $\langle a \rangle \subseteq G$; hence $\langle a \rangle$ contains at most |G| elements; hence there exists an integer r such that $a^r = \mathbf{1}$.
 - $(\langle a \rangle, \cdot)$ is also a group; it is a subgroup of G.
- 7. A group (G, \cdot) is said to be a cyclic group if there exists an element $g \in G$ such that $\langle g \rangle = G$.

¹Portions taken from Dan Boneh's number theory fact sheet.

Number Theory Basics

1. The greatest common divisor (gcd) of integers a, b (written gcd(a, b)) is the greatest integer d such that d|a and d|b.

When gcd(a, b) = 1, we say that a and b are relatively prime.

- 2. Given integers a and b, then d = gcd(a, b) is the least positive integer that can be represented as ax + by, where x and y are integer numbers.
 - E.g., gcd(100, 36) = 4 and 4 = 4 * 100 + (-11) * 36 = 400 396.

The Extended Euclidian algorithm finds d = gcd(a, b) and x, y such that d = ax + by.

3. For $a, b \in \mathbb{Z}$ and $n \in \mathbb{Z}^+$, we write $a \equiv b \pmod{n}$ iff n | (b - a).

Note that $a \equiv b \pmod{n}$ iff $(a \mod n) = (b \mod n)$.

The congruence relation modulo n is an equivalence relation, i.e., it is reflexive, symmetric, and transitive.

4. If $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$, then we have $a + c \equiv b + d \pmod{n}$, $a - c \equiv b + d \pmod{n}$, and $a \times c \equiv b \times d \pmod{n}$.

From $ax \equiv bx \pmod{n}$, we can conclude $a \equiv b \pmod{n}$ if gcd(x, n) = 1.

5. Fix $n \in \mathbb{Z}^+$. We use \mathbb{Z}_n to denote $\{0, 1, \dots, n-1\}$, and \mathbb{Z}_n^* to denote the set $\{a \in \mathbb{Z}_n \mid \gcd(a, n) = 1\}$.

For a prime number p, we have $\mathbb{Z}_p^* = \mathbb{Z}_p - \{0\}$.

Define addition \oplus over \mathbb{Z}_n , $a \oplus b = (a + b) \mod n$. We often overload + to use it for \oplus .

Define multiplication \otimes over \mathbb{Z}_n , $a \otimes b = a \times b \mod n$. We often overload \times and use it \otimes . (Following common convention, we sometimes omit \times and write just ab.)

- 6. An alternative view of modular arithmetic is to view each element a ∈ Z_n as the equivalence class [a] = {x ∈ Z | a ≡ x (mod n)}. Addition is defined as: [a] ⊕ [b] = [a + b]. Multiplication is defined as [a] ⊗ [b] = [a × b].
- 7. Properties of modular arithmetic:
 - $\langle \mathbb{Z}_n, + \rangle$ is a group.
 - $\langle \mathbb{Z}_n^*, \times \rangle$ is a group. For every $a \in \mathbb{Z}_n^*$, we have gcd(a, n) = 1; thus there exists x, y such that ax + ny = 1; let $b = x \mod n$, we have $b \in \mathbb{Z}_n^*$ and ab = 1. *Example*: $\mathbb{Z}_7^* = \{1, 2, 3, 4, 5, 6\}$, and $1 \times 1 = 1$, $2 \times 4 = 1$, $3 \times 5 = 1$, $6 \times 6 = 1$.
- 8. The *Chinese Remainder Theorem*: Let $k \ge 2$. Suppose that n_1, n_2, \dots, n_k are integers that are pairwise relatively prime. Let $N = n_1 n_2 \cdots n_k$. Then for any integers a_1, a_2, \cdots, a_k , there exists a *unique* element in \mathbb{Z}_N that solves the following system of congruences:

 $x \equiv a_1 \pmod{n_1}$ $x \equiv a_2 \pmod{n_2}$ \vdots $x \equiv a_k \pmod{n_k}$

Proof: Let $m_i = N/n_i$. Then $gcd(m_i, n_i) = 1$. Let $e_i = (m_i^{-1} \mod n_i)$. The solution is

$$x = \sum_{i=1}^{k} a_i m_i e_i$$

 $a_1m_1e_1 + a_2m_2e_2 + \dots + a_km_ke_k = a_im_ie_i = a_im_i(m_i^{-1} \mod n_i) = a_i \pmod{n_i}$

9. Euler's totient function: Define $\phi(n) = |\mathbb{Z}_n^*|$.

When n_1 and n_2 are relatively prime, then $\phi(n_1n_2) = \phi(n_1)\phi(n_2)$.

Proof. Define the function $f : \mathbb{Z}_n \to \mathbb{Z}_p \times \mathbb{Z}_q$ as $f(x) = (x \mod p, x \mod q)$, then by the CRT, f is a one-to-one mapping from \mathbb{Z}_n to $\mathbb{Z}_p \times \mathbb{Z}_q$. Further, f is a one-to-one mapping from \mathbb{Z}_n^* to $\mathbb{Z}_p^* \times \mathbb{Z}_q^*$.

$$\begin{split} \phi(p^e) &= p^e - p^{e-1}, \text{ and} \\ \phi\left(n = p_1^{e_1} \cdots p_k^{e_k}\right) = \prod_{i=1}^k (p_i^{e_i} - p_i^{e_i-1}) = \prod_{i=1}^k p_i^{e_i} (1 - \frac{1}{p_i}) = n \prod_{i=1}^k \frac{1}{p_i} \end{split}$$

Arithmetic modulo primes

Basic facts

- 1. We are dealing with primes p on the order of 300 digits long (1024 bits).
- 2. Fermat's Theorem: For any $a \neq 0 \mod p$, we have: $a^{p-1} = 1 \mod p$.

Direct proof: The set $\{a, 2a \mod p, 3a \mod p, \dots, (p-1)a \mod p\}$ is a permutation of $\{1, 2, \dots, (p-1)\}$. Then $a \times 2a \times \dots \times (p-1)a = (p-1)! \pmod{p}$. Then $a^{p-1} \times (p-1)! = (p-1)! \pmod{p}$. Because gcd((p-1)!, p) = 1, we have $a^{p-1} = 1 \pmod{p}$.

- 3. \mathbb{Z}_p^* is a cyclic group. I.e., there exist generators in \mathbb{Z}_p^* . Such elements are also called primitive roots Example: in \mathbb{Z}_7^* , $\langle 3 \rangle = \{1, 3, 3^2, 3^3, 3^4, 3^5\} = \{1, 3, 2, 6, 4, 5\} = \mathbb{Z}_3^*$
- 4. Not every element of \mathbb{Z}_p^* is a generator (primitive root).

Example: in \mathbb{Z}_7 we have $\langle 2 \rangle = \{1, 2, 4\}$.

5. Testing whether an element a in \mathbb{Z}_p^* is a generator (primitive root): calculate the prime factorization of $\phi(p-1)$; let p_1, \dots, p_k be $\phi(p-1)$'s prime factors. For each p_i , calculate $a^{\phi(p-1)/p_i} \mod p$. We have a is a generator iff $a^{\phi(p-1)/p_i} \neq 1 \pmod{p}$ for each i.

- 6. Let g be a generator of \mathbb{Z}_p^* , then $x = g^j$ is a generator if and only if gcd(j, (p-1)) = 1. Hence the number of generators is $\phi(p-1)$.
- 7. The order of a ∈ Z_p^{*} is the smallest positive integer a such that g^a = 1(mod p). The order of a ∈ Z_p^{*} is denoted ord_p(a). Example: ord₇(3) = 6 and ord₇(2) = 3.
- 8. Corollary of Lagrange's theorem: For all $a \in \mathbb{Z}_p^*$ we have $\operatorname{ord}_p(a)|(p-1)$.
- If the factorization of p − 1 is known then there is a simple and efficient algorithm to determine ord_p(a) for any a ∈ Z^{*}_p.
- 10. Let $g \in Zps$ be a generator of \mathbb{Z}_p^* . Suppose that q is a prime factor of (p-1) (i.e., q|(p-1) and q is prime). Let $h = g^{(p-1)/q}$. Then the element h has order q. $\langle h \rangle = \{1, h, h^2, \dots, h^{q-1}\}$ is called the subgroup generated by h; the subgroup has q elements.

 $\langle n \rangle = \{1, n, n, \dots, n^{r}\}$ is called the subgroup generated by *n*, the subgroup has *q* element Each element in $\langle h \rangle$ (except for 1) is a generator of $\langle h \rangle$.

- One commonly used setting is to use p = 2q + 1, where both p and q are primes. And use the subgroup $\langle h \rangle$, where h is an order-q element in \mathbb{Z}_p^* .
- Another commonly used setting is to use p of 1024 bits such that (p − 1) has a prime factor q of 160 bits. Find an element h of order q, and use the subgroup (h).

Quadratic residues

- 1. The square root of $x \in \mathbb{Z}_p$ is a number $y \in \mathbb{Z}_p$ such that $y^2 = x \mod p$. Example: $\sqrt{2} \mod 7 = 3$ since $3^2 = 2 \mod 7$. $\sqrt{3} \mod 7$ does not exist.
- 2. An element $x \in \mathbb{Z}_p^*$ is called a *Quadratic Residue (QR)* if it has a square root in \mathbb{Z}_p .
- 3. How many square roots does $x \in \mathbb{Z}_p$ have?

If $x^2 = y^2 \mod p$ then $0 = x^2 - y^2 = (x - y)(x + y) \mod p$.

Since p is prime, we know that either p|(x - y) or p|(x + y). Therefore, either $x = y \pmod{p}$ or $x = -y \pmod{p}$.

Hence, elements in \mathbb{Z}_p has either zero square roots or two square roots.

If a is a square root of x (modulo p), then -a is also a square root of x (modulo p).

- Easy fact: Let g be a generator of Z^{*}_p, then x = g^r is QR iff r is even. Exactly half the elements of Z^{*}_p are QRs.
- 5. Euler's criterion: $x \in \mathbb{Z}_p$ is a QR if and only if $x^{(p-1)/2} = 1$.

Proof. Let $x = g^r$, where g is a generator. Then $x^{(p-1)/2} = g^{(p-1)r/2} = 1$ if and only if $(p-1) \left| \frac{(p-1)r}{2} \right|$, which is true iff r is even.

Example: $2^{(7-1)/2} = 1 \mod 7$ but $3^{(7-1)/2} = -1 \mod 7$.

- 6. For any x ∈ Z_p^{*}, a = x^{(p-1)/2} is a square root of 1.
 Square roots of 1 modulo p is 1 and −1.
 Hence, for x ∈ Z_p^{*} we know that x^{(p-1)/2} is 1 or −1.
- 7. Legendre symbol: for $x \in \mathbb{Z}_p$ define

$$\left(\frac{x}{p}\right) = \begin{cases} 1 & \text{if } x \text{ is a } QR \text{ in } \mathbb{Z}_p \\ -1 & \text{if } x \text{ is not a } QR \text{ in } \mathbb{Z}_p \\ 0 & \text{if } x = 0 \mod p \end{cases}$$

Let $x = g^r$. The Legendre symbol reveals the parity of r.

- 8. By Euler's Criterion, we know that $\left(\frac{x}{p}\right) = x^{(p-1)/2} \mod p$. Thus the Legendre symbol can be efficiently computed.
- 9. When $p = 3 \mod 4$, computing square roots of $x \in \mathbb{Z}_p^*$ is easy.

Simply compute $a = x^{(p+1)/4} \mod p$. $a = \sqrt{x}$ because $a^2 = x^{(p+1)/2} = x \cdot x^{(p-1)/2} = x \cdot 1 = x \pmod{p}$.

10. When $p = 1 \mod 4$ computing square roots in \mathbb{Z}_p is possible but more complicated; a randomized algorithm is typically used.

Easy problems in \mathbb{Z}_p

- 1. Generating a random element. Adding and multiplying elements.
- 2. Computing $p^r \mod p$ is easy even if r is very large. (Using the repeated squaring algorithm.)
- 3. Inverting an element. Solving linear systems.
- 4. Testing if an element in a QR and computing its square root if it is a QR.

Problems that are believed to be hard in \mathbb{Z}_p :

- 1. Let g be a generator of \mathbb{Z}_p^* . Given $x \in \mathbb{Z}_p^*$ find an r such that $x = g^r \mod p$. This is known as the *discrete log problem*.
- 2. Let g be a generator of \mathbb{Z}_p^* . Given $x = g^{r_1}$ and $y = g^{r_2}$, where r_1 and r_2 are randomly chosen. Find $z = g^{r_1 r_2}$. This is known as the *Computational Diffie-Hellman problem*.
- 3. Let g be a generator of \mathbb{Z}_p^* . Given g, g^{r_1} , and g^{r_2} where r_1 and r_2 are randomly chosen. Distinguish $g^{r_1r_2}$ from g^{r_3} . This is known as the *Computational Diffie-Hellman problem*.

This is typically formalized as the following: One is given a tuple (g, x, y, z), which is drawn from one of the following two ensembles:

- (g, g^a, g^b, g^{ab}) , where g is a random generator and a, b are randomly chosen from $\{0, 1, \dots, p-1\}$.
- (g, g^a, g^b, g^c) , where g is a random generator and a, b, c are randomly chosen from $\{0, 1, \dots, p-1\}$.

Arithmetic modulo composites

- 1. We are dealing with integers N on the order of 300 digits long (1024 bits). Unless otherwise stated, N is the product of two equal size primes, e.g., each on the order of 150 digits (512 bits).
- 2. Euler's Theorem: Let $N \in Z^+$, $a \in \mathbb{Z}_N^*$. Then $a^{\phi(N)} = 1 \pmod{N}$. As a consequence, if $i \equiv j \pmod{\phi(N)}$, then $a^i = a^j \pmod{N}$.
- 3. Let p > q be two primes and N = pq. The percentage of elements in \mathbb{Z}_N but not \mathbb{Z}_N^* is

$$\frac{pq - (p-1)(q-1)}{pq} = \frac{p+q-1}{pq} < \frac{2p}{pq} = \frac{2}{q},$$

which is extremely small when q is large (512 bits).

- 4. Let p, q be integers that are relatively prime. Let N = pq. Given $r_1 \in \mathbb{Z}_p$ and $r_2 \in \mathbb{Z}_p$ there exists a *unique* element $s \in \mathbb{Z}_N$ such that $s = r_1 \mod p$ and $s = r_2 \mod p$. Furthermore, s can be computed efficiently.
- 5. The CRT shows that each element $s \in \mathbb{Z}_N$ can be viewed as a pair (s_1, s_2) where $s_1 = s \mod p$ and $s_2 = s \mod q$. The uniqueness guarantee shows that each pair $(s_1, s_2) \in \mathbb{Z}_p \times \mathbb{Z}_q$ corresponds to one element of \mathbb{Z}_N .
- 6. Note that by the CRT, if $x = y \mod p$ and $x = y \mod q$, then $x = y \mod N$.
- 7. An element $s \in \mathbb{Z}_N^*$ is a QR if and only if $s \mod p$ is a QR in \mathbb{Z}_p and $s \mod q$ is a QR in \mathbb{Z}_q .
 - If $s = a^2 \mod N$, then $s = a^2 \mod p$ and $s = a^2 \mod q$.

Hence the number of QR in \mathbb{Z}_N is $\frac{p-1}{2} \cdot \frac{q-1}{2} = \frac{\phi(N)}{2}$.

8. Jacobi symbol: for $x \in \mathbb{Z}_N$ define $\left(\frac{x}{N}\right) = \left(\frac{x}{p}\right) \cdot \left(\frac{x}{q}\right)$.

Half of \mathbb{Z}_N^* has Jacobi symbol being 1, among which half are QR.

There is an efficient algorithm to compute the Jacobi symbol of $x \in \mathbb{Z}_N$ without knowing the factorization of N.

9. Consider the RSA function $f(x) = x^2 \mod N$. When e is odd we have that:

$$\left(\frac{x^e}{N}\right) = \left(\frac{x^e}{p}\right) \cdot \left(\frac{x^e}{q}\right) = \left(\frac{x}{p}\right) \cdot \left(\frac{x}{q}\right) = \left(\frac{x}{N}\right)$$

Hence, given an RSA ciphertext $C = x^e \mod N$ the Jacobi symbol of C reveals the Jacobi symbol of x.

Problems that are believed to be hard if the factorization of N is unknown, but become easy if the factorization of N is known :

- 1. Finding prime factors of N.
- 2. Testing if an element in \mathbb{Z}_N is QR.
- 3. Computing the square root of a QR in \mathbb{Z}_N .

This is provably as hard as factoring N.

When the factorization of N = pq is known, one computes the square root of $x \in \mathbb{Z}_n^*$ by first computing $\sqrt{x} \mod p$ and then $\sqrt{x} \mod q$, and then using CRT to obtain the square roots.

4. Computing the *e*'th roots modulo N when $gcd(e, \phi(N)) = 1$.