
CS655: Cryptography Feb 15, 2007

Lecture Outline for Review of Basic Number Theory1

Algebra Basics

1. Group: Given a non-empty set G, and a binary operation · over G. We say that (G, ·) is a group if the
following holds:

Closure: For every a, b ∈ G, a · b ∈ G
Associativity: For every a, b, c ∈ G, (a · b) · c = a · (b · c).
Identity: There exists an element 1 ∈ G such that for every a ∈ G, a · 1 = 1 · a = a
Invertibility: For every a ∈ G there exists unique b ∈ G such that a · b = b · a = 1. The

element b is referred to as the inverse of the element a, and is denoted a−1.

2. A group (G, ·) is called abelian (or commutative) if it satisfies the following property:

Commutative For every a, b ∈ G, a · b = b · a.

3. Given a group (G, ·), we say (G′, ·) is a subgroup of (G, ·) if G′ ⊆ G and (G′, ·) is also group.

4. Examples: We use Z (Q, R, resp.) to denote the set of all integers (rational numbers, real numbers,
resp.), and Z+ (Q+, R+, resp.) the set of all positive integers (rational numbers, real numbers, resp.)

• (Z, +) is an abelian group;

• (Z,×) is not a group.

• (Q, +) is an abelian group, so is (R, +);

• (Q \ {0},×) is an abelian group; so is (R \ {0},×)

• (Q+,×) is an abelian group; it is a subgroup of (Q− {0},×).

5. Lagrange’s theorem: If (G′, ·) is a subgroup of ((G, ·), and both G′ and G are finite, then |G′| divides
|G|.

6. Given group 〈G, ·〉 and an element a ∈ G, use 〈a〉 to denote the set {1, a, a2, a3, · · · }.

• 〈a〉 ⊆ G; hence 〈a〉 contains at most |G| elements; hence there exists an integer r such that
ar = 1.

• (〈a〉, ·) is also a group; it is a subgroup of G.

7. A group (G, ·) is said to be a cyclic group if there exists an element g ∈ G such that 〈g〉 = G.

1Portions taken from Dan Boneh’s number theory fact sheet.



Number Theory Basics

1. The greatest common divisor (gcd) of integers a, b (written gcd(a, b)) is the greatest integer d such
that d|a and d|b.

When gcd(a, b) = 1, we say that a and b are relatively prime.

2. Given integers a and b, then d = gcd(a, b) is the least positive integer that can be represented as
ax + by, where x and y are integer numbers.

• E.g., gcd(100, 36) = 4 and 4 = 4 ∗ 100 + (−11) ∗ 36 = 400− 396.

The Extended Euclidian algorithm finds d = gcd(a, b) and x, y such that d = ax + by.

3. For a, b ∈ Z and n ∈ Z+, we write a ≡ b (mod n) iff n|(b− a).

Note that a ≡ b (mod n) iff (a mod n) = (b mod n).

The congruence relation modulo n is an equivalence relation, i.e., it is reflexive, symmetric, and
transitive.

4. If a ≡ b (mod n) and c ≡ d (mod n), then we have a+ c ≡ b + d (mod n), a− c ≡ b+ d (mod n),
and a× c ≡ b× d (mod n).

From ax ≡ bx (mod n), we can conclude a ≡ b (mod n) if gcd(x, n) = 1.

5. Fix n ∈ Z+. We use Zn to denote {0, 1, · · · , n− 1}, and Z∗n to denote the set {a ∈ Zn | gcd(a, n) =
1}.

For a prime number p, we have Z∗p = Zp − {0}.

Define addition ⊕ over Zn, a⊕ b = (a + b) mod n. We often overload + to use it for ⊕.

Define multiplication⊗ over Zn, a⊗b = a×b mod n. We often overload× and use it⊗. (Following
common convention, we sometimes omit × and write just ab.)

6. An alternative view of modular arithmetic is to view each element a ∈ Zn as the equivalence class
[a] = {x ∈ Z | a ≡ x (mod n)}. Addition is defined as: [a]⊕ [b] = [a + b]. Multiplication is defined
as [a]⊗ [b] = [a× b].

7. Properties of modular arithmetic:

• 〈Zn,+〉 is a group.

• 〈Z∗n,×〉 is a group. For every a ∈ Z∗n, we have gcd(a, n) = 1; thus there exists x, y such that
ax + ny = 1; let b = x mod n, we have b ∈ Z∗n and ab = 1.
Example: Z∗7 = {1, 2, 3, 4, 5, 6}, and 1× 1 = 1, 2× 4 = 1, 3× 5 = 1, 6× 6 = 1.

8. The Chinese Remainder Theorem: Let k ≥ 2. Suppose that n1, n2, · · · , nk are integers that are
pairwise relatively prime. Let N = n1n2 · · ·nk. Then for any integers a1, a2, · · · , ak, there exists a
unique element in ZN that solves the following system of congruences:
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x ≡ a1 (mod n1)
x ≡ a2 (mod n2)
...
x ≡ ak (mod nk)

Proof: Let mi = N/ni. Then gcd(mi, ni) = 1. Let ei = (m−1
i mod ni). The solution is

x =
k∑

i=1

aimiei

a1m1e1 + a2m2e2 + · · ·+ akmkek = aimiei = aimi(m−1
i mod ni) = ai (mod ni)

9. Euler’s totient function: Define φ(n) = |Z∗n|.
When n1 and n2 are relatively prime, then φ(n1n2) = φ(n1)φ(n2).

Proof. Define the function f : Zn → Zp×Zq as f(x) = (x mod p, x mod q), then by the
CRT, f is a one-to-one mapping from Zn to Zp × Zq. Further, f is a one-to-one mapping
from Z∗n to Z∗p × Z∗q .

φ(pe) = pe − pe−1, and

φ
(
n = pe1

1 · · · pek
k

)
=

∏k
i=1(p

ei
i − pei−1

i ) =
∏k

i=1 pei
i (1− 1

pi
) = n

∏k
i=1

1
pi

Arithmetic modulo primes

Basic facts

1. We are dealing with primes p on the order of 300 digits long (1024 bits).

2. Fermat’s Theorem: For any a 6= 0 mod p, we have: ap−1 = 1 mod p.

Direct proof: The set {a, 2a mod p, 3a mod p, · · · , (p− 1)a mod p} is a permutation of
{1, 2, · · · , (p− 1)}.
Then a× 2a× · · · × (p− 1)a = (p− 1)! (mod p).
Then ap−1 × (p− 1)! = (p− 1)! (mod p).
Because gcd((p− 1)!, p) = 1, we have ap−1 = 1 (mod p).

3. Z∗p is a cyclic group. I.e., there exist generators in Z∗p. Such elements are also called primitive roots

Example: in Z∗7, 〈3〉 = {1, 3, 32, 33, 34, 35} = {1, 3, 2, 6, 4, 5} = Z∗3

4. Not every element of Z∗p is a generator (primitive root).

Example: in Z7 we have 〈2〉 = {1, 2, 4}.

5. Testing whether an element a in Z∗p is a generator (primitive root): calculate the prime factorization
of φ(p− 1); let p1, · · · , pk be φ(p− 1)’s prime factors. For each pi, calculate aφ(p−1)/pi mod p. We
have a is a generator iff aφ(p−1)/pi 6= 1 (mod p) for each i.
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6. Let g be a generator of Z∗p, then x = gj is a generator if and only if gcd(j, (p − 1)) = 1. Hence the
number of generators is φ(p− 1).

7. The order of a ∈ Z∗p is the smallest positive integer a such that ga = 1(mod p).

The order of a ∈ Z∗p is denoted ordp(a).

Example: ord7(3) = 6 and ord7(2) = 3.

8. Corollary of Lagrange’s theorem: For all a ∈ Z∗p we have ordp(a)|(p− 1).

9. If the factorization of p − 1 is known then there is a simple and efficient algorithm to determine
ordp(a) for any a ∈ Z∗p.

10. Let g ∈ Zps be a generator of Z∗p. Suppose that q is a prime factor of (p− 1) (i.e., q|(p− 1) and q is
prime). Let h = g(p−1)/q. Then the element h has order q.

〈h〉 = {1, h, h2, · · · , hq−1} is called the subgroup generated by h; the subgroup has q elements.

Each element in 〈h〉 (except for 1) is a generator of 〈h〉.

• One commonly used setting is to use p = 2q + 1, where both p and q are primes. And use the
subgroup 〈h〉, where h is an order-q element in Z∗p.

• Another commonly used setting is to use p of 1024 bits such that (p− 1) has a prime factor q of
160 bits. Find an element h of order q, and use the subgroup 〈h〉.

Quadratic residues

1. The square root of x ∈ Zp is a number y ∈ Zp such that y2 = x mod p.

Example:
√

2 mod 7 = 3 since 32 = 2 mod 7.√
3 mod 7 does not exist.

2. An element x ∈ Z∗p is called a Quadratic Residue (QR) if it has a square root in Zp.

3. How many square roots does x ∈ Zp have?

If x2 = y2 mod p then 0 = x2 − y2 = (x− y)(x + y) mod p.

Since p is prime, we know that either p|(x − y) or p|(x + y). Therefore, either x = y(mod p) or
x = −y(mod p).

Hence, elements in Zp has either zero square roots or two square roots.

If a is a square root of x (modulo p), then −a is also a square root of x (modulo p).

4. Easy fact: Let g be a generator of Z∗p, then x = gr is QR iff r is even.

Exactly half the elements of Z∗p are QRs.

5. Euler’s criterion: x ∈ Zp is a QR if and only if x(p−1)/2 = 1.

Proof. Let x = gr, where g is a generator. Then x(p−1)/2 = g(p−1)r/2 = 1 if and only if
(p− 1)

∣∣∣ (p−1)r
2 , which is true iff r is even.
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Example: 2(7−1)/2 = 1 mod 7 but 3(7−1)/2 = −1 mod 7.

6. For any x ∈ Z∗p, a = x(p−1)/2 is a square root of 1.

Square roots of 1 modulo p is 1 and −1.

Hence, for x ∈ Z∗p we know that x(p−1)/2 is 1 or −1.

7. Legendre symbol: for x ∈ Zp define

(
x

p

)
=





1 if x is a QR in Zp

−1 if x is not a QR in Zp

0 if x = 0 mod p

Let x = gr. The Legendre symbol reveals the parity of r.

8. By Euler’s Criterion, we know that
(

x
p

)
= x(p−1)/2 mod p.

Thus the Legendre symbol can be efficiently computed.

9. When p = 3 mod 4, computing square roots of x ∈ Z∗p is easy.

Simply compute a = x(p+1)/4 mod p.

a =
√

x because a2 = x(p+1)/2 = x · x(p−1)/2 = x · 1 = x (mod p).

10. When p = 1 mod 4 computing square roots in Zp is possible but more complicated; a randomized
algorithm is typically used.

Easy problems in Zp

1. Generating a random element. Adding and multiplying elements.

2. Computing gr mod p is easy even if r is very large. (Using the repeated squaring algorithm.)

3. Inverting an element. Solving linear systems.

4. Testing if an element in a QR and computing its square root if it is a QR.

Problems that are believed to be hard in Zp:

1. Let g be a generator of Z∗p. Given x ∈ Z∗p find an r such that x = gr mod p. This is known as the
discrete log problem.

2. Let g be a generator of Z∗p. Given x = gr1 and y = gr2 , where r1 and r2 are randomly chosen. Find
z = gr1r2 . This is known as the Computational Diffie-Hellman problem.

3. Let g be a generator of Z∗p. Given g, gr1 , and gr2 where r1 and r2 are randomly chosen. Distinguish
gr1r2 from gr3 . This is known as the Computational Diffie-Hellman problem.

This is typically formalized as the following: One is given a tuple (g, x, y, z), which is drawn from
one of the following two ensembles:
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• (g, ga, gb, gab), where g is a random generator and a, b are randomly chosen from {0, 1, · · · , p−
1}.

• (g, ga, gb, gc), where g is a random generator and a, b, c are randomly chosen from {0, 1, · · · , p−
1}.

Arithmetic modulo composites

1. We are dealing with integers N on the order of 300 digits long (1024 bits). Unless otherwise stated,
N is the product of two equal size primes, e.g., each on the order of 150 digits (512 bits).

2. Euler’s Theorem: Let N ∈ Z+, a ∈ Z∗N . Then aφ(N) = 1 (mod N).

As a consequence, if i ≡ j (mod φ(N)), then ai = aj (mod N).

3. Let p > q be two primes and N = pq. The percentage of elements in ZN but not Z∗N is

pq − (p− 1)(q − 1)
pq

=
p + q − 1

pq
<

2p

pq
=

2
q
,

which is extremely small when q is large (512 bits).

4. Let p, q be integers that are relatively prime. Let N = pq. Given r1 ∈ Zp and r2 ∈ Zp there exists a
unique element s ∈ ZN such that s = r1 mod p and s = r2 mod p. Furthermore, s can be computed
efficiently.

5. The CRT shows that each element s ∈ ZN can be viewed as a pair (s1, s2) where s1 = s mod p and
s2 = s mod q. The uniqueness guarantee shows that each pair (s1, s2) ∈ Zp×Zq corresponds to one
element of ZN .

6. Note that by the CRT, if x = y mod p and x = y mod q, then x = y mod N .

7. An element s ∈ Z∗N is a QR if and only if s mod p is a QR in Zp and s mod q is a QR in Zq.

• If s = a2 mod N , then s = a2 mod p and s = a2 mod q.

Hence the number of QR in ZN is p−1
2 · q−1

2 = φ(N)
2 .

8. Jacobi symbol: for x ∈ ZN define
(

x
N

)
=

(
x
p

)
·
(

x
q

)
.

Half of Z∗N has Jacobi symbol being 1, among which half are QR.

There is an efficient algorithm to compute the Jacobi symbol of x ∈ ZN without knowing the factor-
ization of N .

9. Consider the RSA function f(x) = x2 mod N . When e is odd we have that:
(

xe

N

)
=

(
xe

p

)
·
(

xe

q

)
=

(
x

p

)
·
(

x

q

)
=

( x

N

)

Hence, given an RSA ciphertext C = xe mod N the Jacobi symbol of C reveals the Jacobi symbol
of x.
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Problems that are believed to be hard if the factorization of N is unknown, but become easy if the
factorization of N is known :

1. Finding prime factors of N .

2. Testing if an element in ZN is QR.

3. Computing the square root of a QR in ZN .

This is provably as hard as factoring N .

When the factorization of N = pq is known, one computes the square root of x ∈ Z∗n by first
computing

√
x mod p and then

√
x mod q, and then using CRT to obtain the square roots.

4. Computing the e’th roots modulo N when gcd(e, φ(N)) = 1.
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