CS655: Cryptography

Lecture Outline for Hash Functions

5 Hash Functions

Readings: Sections 5.1-5.4 of Bellare&Rogaway

5.1 The hash function SHA1

- Let $\{0,1\}^{<\ell}$ denote the set of all strings of length strictly less than ℓ . SHA1 is a function: $\{0,1\}^{<2^{64}} \rightarrow \{0,1\}^{160}$.
- SHA1 is supposed to be collision-resistant. Collisions do exist. Even if we restrict the domain of SHA1 of strings of 256 bits, many strings must have the same hash value. (By pigeonhole principal, at least 2⁹⁶ messages must collide.
- Difficulty to formalize collision-resistance: Can we say that there does not exist an algorithm that runs with time *t* and output a collision?
- It is difficult to capture the idea that it is infeasible for human beings to find collisions in SHA1. E.g., cannot formalize that one number is difficult to factor.
- Formal definition uses a family of functions.

5.2 Collision-resistant hash functions

- A hash function is a family of functions $H : \mathcal{K} \times D \times R$. $H_K(M) : D \to R = H(K, M)$.
- SHA1 can be extended to a family SHF1: $\{0,1\}^{128} \times \{0,1\}^{<2^{64}} \rightarrow \{0,1\}^{160}$, by allowing variable initial value.
- Different notions of collision resistance.
 - CR0 attack: Adversary picks (x_1, x_2) ; Challenger randomly picks $K \stackrel{\$}{\leftarrow} \mathcal{K}$; adversary succeeds if $H_K(x_1) = H_K(x_2)$.

A hash function resistant to such an attack is called universal (i.e., $\forall x_1 \forall x_2 \Pr[H_K(x_1) = H_K(x_2)] \le 1/|R|$), or almost universal. E.g., $H_{\langle a,b \rangle}(x) = ax + b \pmod{p}$.

CR1-KK: Adversary picks message x₁; Challenger randomly picks K ← K; adversary is given K and outputs x₂ and succeeds if H_K(x₁) = H_K(x₂). Needs to find a designated collision. A hash function resistant to such an attack is called universal one-way (aka. target-collision resistant).

Consider SHF-1, this attack is similar to breaking one-wayness (or second preimage) of SHA-1 for any IV. Some formalize this by giving the adversary a random value y and a random K, and the adversary needs to find x such that $H_K(x) = y$.

Universal One-Way Hash Functions (UOWHF) exist if and only if one-way functions exist.

- CR2-KK: Challenger picks $K \stackrel{\$}{\leftarrow} \mathcal{K}$; Adversary is given K, and outputs x_1, x_2 . Adversary succeeds if $H_K(x_1) = H_K(x_2)$.

Breaking collision-resistance of SHF-1 means that one can break collision resistance of SHA-1 for any IV.

A hash function resistant to such an attack is called collision-free, collision-resistant, or collision-intractable. A Collision Resistant Hash Function (CRHF).

One-way function seems insufficient to build CRHF.

5.3 Collision-finding attacks

• Consider CR2-KK. One attack strategy is the birthday attack.

5.4 One-wayness of collision-resistant hash functions