CS655: Cryptography

Spring 2007

Homework #2

Due date & time: 10:30am on February 1, 2007. Hand in at the beginning of class (preferred), or email to the instructor (ninghui@cs.purdue.edu) by the due time.

Late Policy: Late homework will not be accepted.

Additional Instructions: (1) The submitted homework must be typed. Using Latex is recommended, but not required.

Definition 1 We call two ensembles $\{X_n\}_{n \in \mathbb{N}}$ and $\{Y_n\}_{n \in \mathbb{N}}$ statistical close if their statistical difference (also known as variation distance), defined as follows:

$$\Delta(n) \stackrel{\text{def}}{=} \frac{1}{2} \cdot \sum_{alpha} \left| \Pr\left[X_n = \alpha \right] - \Pr\left[Y_n = \alpha \right] \right|,$$

is negligible in n.

Problem 1 (5 pts) An equivalent formulation of statistical closeness

Prove that two ensembles $\{X_n\}_{n\in\mathbb{N}}$ and $\{Y_n\}_{n\in\mathbb{N}}$ are statistically close if and only if for every set $S \subset \{0,1\}^*$,

$$\Delta_S(n) \stackrel{\text{def}}{=} \left| \Pr\left[X_n \in S \right] - \Pr\left[Y_n \in S \right] \right|$$

is negligible in n.

Hint: Show that $\Delta(n)$ in Definition 1 equals $\max_{S} \{\Delta_{S}n\}$.

Problem 2 (5 pts) Statistical closeness implies computational indistinguishability.

Prove that if two ensembles are statistically close, then they are polynomial-time-indistinguishable.

Hint: Use the result of the previous problem, and define for every function $f : \{0, 1\}^* \to \{0, 1\}$ a set $S_f \stackrel{\text{def}}{=} \{x : f(x) = 1\}.$

Problem 3 (10 pts) Stretching a PRNG and proof using the Hybrid Technique.

Let $g: \{0,1\}^n \to \{0,1\}^{n+1}$ be a (t,ϵ) -PRNG. Consider the function $h: \{0,1\}^n \to \{0,1\}^{r+1}$ defined by

$$h(s_0) = g(s_0)|_1 \parallel g(s_1)|_1 \parallel \cdots \parallel g(s_r)|_1,$$

where $0 < r \ll 1/\epsilon$, $s_0 \stackrel{\$}{\leftarrow} \{0,1\}^n$, and $s_i = g(s_{i-1})|_{2,\dots,n+1}$ for $1 \leq r \leq r$. Then h is a $(t, \epsilon \cdot (r+1))$ -PRNG.