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Security Analysis in Trust Management

n Publications:
q Li, Mitchell & Winsborough: “Beyond Proof-of-Compliance: 

Security Analysis in Trust Management”, JACM 2005.  
Conference version in SSP 2003.



2nd Int’l Summer School in Computation Logic 
June 17, 2004 Ninghui Li (Purdue University) 3

The Abstract Security Analysis Problem

n Given an initial state P, 
q a query Q,
q and a rule R that restricts how states can change 

(defines reachability among states);
n Ask

q Is Q possible?  (existential)
n whether ∃ reachable P’s.t. P’u Q

q Is Q necessary? (universal)
n whether ∀ reachable P’, P’u Q
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Statements in RT0= RT[Z, ∩]

n Type-1: K.r ← K1

q mem[K.r] ⊇ {K1}
q KHR.manager ← KAlice

n Type-2: K.r ← K1.r1

q mem[K.r] ⊇ mem[K1.r1] 
q KSSO.admin ← KHR.manager
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Statements in RT[Z, ∩]

n Type-3: K.r ← K.r1.r2

q Let mem[K.r1] be {K1, K2, …, Kn}
mem[K.r] ⊇ mem[K1.r2] ∪ mem[K2.r2] 

∪ … ∪ mem[Kn.r2]
q KSSO.delegAccess ← KSSO.admin.access

n Type-4: K.r ← K1.r1 ∩ K2.r2

q mem[K.r] ⊇ mem[K1.r2] ∩ mem[K2.r2]
q KSSO.access←KSSo.delegAccess∩KHR.employee
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The Query Q

n Form-1: mem[K.r] ⊇ {K1,…,Kn} ?
n Form-2: {K1,…,Kn} ⊇ mem[K.r] ?
n Form-3: mem[K1.r1] ⊇ mem[K.r] ?
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The Semantic Relation u

n A statement ⇒ a Datalog rule
q K.r ← K2 ⇒ m(K, r, K2)
q K.r ← K1.r1 ⇒ m(K, r, z) :- m(K1, r1, z)
q …

n A state P ⇒ a Datalog program SP[P]
q mem[K.r] ≡ {  K’| m(K,r,K’) is in the minimal  

Herbrand model of SP[P]  }
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Example Queries & Answers

1. KSSO.access ← KSSO.admin
2. KSSO.admin ← KHR.manager
3. KHR.employee ← KHR.manager
4. KHR.manager ← KAlice

5. KHR.employee ← KDavid

mem[KSSO.access] ⊇ {KDavid}? No
{KAlice, KDavid} ⊇ mem[KSSO.employee]?          Yes
mem[KHR.employee] ⊇ mem[KSSO.access]?    Yes
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The Restriction Rule R

n R=(G,S)
q G is a set of growth-restricted roles

n if K.r ∈ G, then cannot add “K.r ← …”

q S is a set of shrink-restricted roles
n if K.r ∈ S, then cannot remove “K.r ← …”

n Motivation:
q Definitions of roles that are not under one’s 

control may change
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Sample Analysis Queries

n Simple safety (existential form-1):
q Is mem[K.r] ⊇ {K1} possible?

n Simple availability (universal form-1):
q Is mem[K.r] ⊇ {K1} necessary?

n Bounded safety (universal form-2):
q Is {K1,…,Kn} ⊇ mem[K.r] necessary?

n Containment (universal form-3): 
q Is mem[K1.r1] ⊇ mem[K.r] necessary?
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Security Analysis: Usage Cases

n Guarantee safety and availability properties of 
an access control system: 
q Properties one wants to guarantee are encoded 

in a set of queries & desirable answers
q R represents how much control one has 

n parts not under one’s control may change in R
n parts under one’s control are considered fixed in R

q Before making changes, one can use analysis to 
guarantee properties are not violated
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An Example

1. KSSO.access ← KSSO.admin
2. KSSO.access ← KSSO.delegAccess ∩ KHR.employee
3. KSSO.admin ← KHR.manager
4. KSSO.delegAccess ← KSSO.admin.access
5. KHR.employee ← KHR.manager
6. KHR.employee ← KHR.engineer
7. KHR.manager ← KAlice

8. KAlice.access ← KBob

Legend: fixed
can grow, can shrink
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A Simple Availability Query

1. KSSO.access ← KSSO.admin
2.2.2. KKKSSOSSOSSO.access .access .access ←←← KKKSSOSSOSSO.delegAccess.delegAccess.delegAccess ∩∩∩ KKKHRHRHR.employee.employee.employee
3. KSSO.admin ← KHR.manager

4.4.4. KKKSSOSSOSSO.delegAccess.delegAccess.delegAccess ←←← KKKSSOSSOSSO.admin.access.admin.access.admin.access
5.5.5. KKKHRHRHR.employee.employee.employee ←←← KKKHRHRHR.manager.manager.manager
6.6.6. KKKHRHRHR.employee.employee.employee ←←← KKKHRHRHR.engineer.engineer.engineer
7. KHR.manager ← KAlice

8.8.8. KKKAliceAliceAlice.access.access.access ←←← KKKBobBobBob

Query: Is mem[KSSO .access] ⊇ {KAlice} necessary?  
Answer: Yes.  (Available)
Why: Statments 1, 3, and 7 cannot be removed
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1.1.1. KKKSSOSSOSSO.access.access.access ←←← KKKSSOSSOSSO.admin.admin.admin
2. KSSO.access ← KSSO.delegAccess ∩ KHR.employee
3. KSSO.admin ← KHR.manager
4. KSSO.delegAccess ← KSSO.admin.access
5.5.5. KKKHRHRHR.employee.employee.employee ←←← KKKHRHRHR.manager.manager.manager
6. KHR.manager ← KAlice

7. KHR.employee ← KHR.engineer
8. KAlice.access ← KBob

A Simple Safety Query

Query: Is mem[KSSO.access] ⊇ {KEve} possible?  
Answer: Yes.  (Unsafe)
Why: Both KHR.engineer and KAlice.access may grow. 
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A Containment Analysis Query about 
Safety

1. KSSO.access ← KSSO.admin
2. KSSO.access ← KSSO.delegAccess ∩ KHR.employee
3. KSSO.admin ← KHR.manager

4.4.4. KKKSSOSSOSSO.delegAccess.delegAccess.delegAccess ←←← KKKSSOSSOSSO.admin.access.admin.access.admin.access
5. KHR.employee ← KHR.manager
6.6.6. KKKHRHRHR.employee.employee.employee ←←← KKKHRHRHR.engineer.engineer.engineer
7.7.7. KKKHRHRHR.manager.manager.manager ←←← KKKAliceAliceAlice

8.8.8. KKKAliceAliceAlice.access.access.access ←←← KKKBobBobBob

Query:    Is mem[KHR.employee] ⊇ mem[KSSO.access] necessary?  
Answer:  Yes. (Safe)
Why: KSSO.access and KSSO.admin cannot grow and 

Statement 5 cannot be removed.
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An Containment Analysis Query about 
Availability

1. KSSO.access ← KSSO.admin
2.2.2. KKKSSOSSOSSO.access .access .access ←←← KKKSSOSSOSSO.delegAccess.delegAccess.delegAccess ∩∩∩ KKKHRHRHR.employee.employee.employee
3. KSSO.admin ← KHR.manager

4.4.4. KKKSSOSSOSSO.delegAccess.delegAccess.delegAccess ←←← KKKSSOSSOSSO.admin.access.admin.access.admin.access
5.5.5. KKKHRHRHR.employee.employee.employee ←←← KKKHRHRHR.manager.manager.manager
6.6.6. KKKHRHRHR.employee.employee.employee ←←← KKKHRHRHR.engineer.engineer.engineer
7.7.7. KKKHRHRHR.manager.manager.manager ←←← KKKAliceAliceAlice

8.8.8. KKKAliceAliceAlice.access.access.access ←←← KKKBobBobBob

Query:    Is mem[KSSO.access] ⊇ mem[KHR.manager] necessary?  
Answer:  Yes. (Available)
Why: Statements 1 and 3 cannot be removed
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Answering Form-1 and Form-2 Queries: 
Intuitions (1)
n RT[Z, ∩] is monotonic
q more statements derive more role memberships

n Form-1 queries are monotonic
q mem[K.r] ⊇ {K1,…,Kn} 
q universal form-1 queries can be answered by 

considering a lower-bound (minimum) state
q existential form-1 queries can be answered by 

considering an upper-bound (maximal) state
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Answering Form-1 and Form-2 Queries: 
Intuitions (2)
n Form-2 queries are anti-monotonic
q {K1,…,Kn} ⊇ mem[K.r]
q universal form-2 queries can be answered by 

considering the upper-bound state
q existential form-1 queries can be answered by 

considering the lower-bound state
n Given P and R, the lower-bound state uniquely 

exists, we denote it P|R
q it can be reached by removing all removable 

statements
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The Lower-Bound Program LB(P,R)

n For each K.r ← K1 in P|R, add 
lb(K, r, K1) 

n For each K.r ← K1.r1 in P|R, add 
lb(K, r, ?Z) :- lb(K1, r1, ?Z) 

n For each K.r ← K.r1.r2 in P|R, add 
lb(K, r, ?Z) :- lb(K, r1, ?Y),  lb(?Y, r2, ?Z) 

n For each K.r ← K1.r1 ∩ K2.r2 in P|R, add
lb(K, r, ?Z) :- lb(K1, r1, ?Z), lb(K2, r2, ?Z)
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Using the Lower-Bound Program

n To answer whether a form-1 query 
mem[K.r] ⊇ {K1,…,Kn} is necessary,

q check whether 
LB(P,R) |= lb(K,r,K1) ∧…∧ lb(K,r,Kn)

n To answer whether a form-2 query 
{K1,…,Kn} ⊇ mem[K.r] is possible

q check whether 
{K1,…,Kn} ⊇ { Z  |  LB(P,R) |= lb(K,r,Z) }
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The Upper-Bound Program UB(P,R)

n Add ub(T, ?r, ?Z)
n For each K.r that can grow, add ub(K, r, ?Z)
n For each K.r ← K1 in P, add ub(K, r, K1)
n For each K.r ← K1.r1 in P, add 

ub(K, r, ?Z) :- ub(K1, r1, ?Z)
n For each K.r ← K.r1.r2 in P, add 

ub(K, r, ?Z) :- ub(K, r1, ?Y),  ub(?Y, r2, ?Z) 
n For each K.r ← K1.r1 ∩ K2.r2 in P, add

ub(K, r, ?Z) :- ub(K1, r1, ?Z), ub(K2, r2, ?Z)
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Using the Upper-Bound Program

n A form-1 query mem[K.r] ⊇ {K1,…,Kn} is 
possible iff. any of the following is true,
q K.r is not growth restricted
q up(K,r,T) is true
q UB(P,R) |= ub(K,r,K1) ∧…∧ ub(K,r,Kn) 

n A form-2 query {K1,…,Kn} ⊇ mem[K.r] is 
necessary iff.
q {K1,…,Kn} ⊇ { Z  |  UB(P,R) |= ub(K,r,Z) }
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What about Form-3 Queries?

n Form-3: mem[K1.r1] ⊇ mem[K.r]
n Neither monotonic nor anti-monotonic
q cannot use the minimal state or the maximal state

n Difficulty: adding new members to K.r may affect 
K1.r1

n We only consider analysis asking whether 
mem[K1.r1] ⊇ mem[K.r] is necessary
q we call this containment analysis
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Complexity Results for Containment 
Analysis
n RT[]: just type 1 and 2 statements

q containment analysis is in PTIME 
n RT[∩]: type 1, 2, and 4 statements

q containment analysis is coNP-complete
n RT[Z]: type 1, 2, and 3 statements

q containment analysis is PSPACE-complete
q remains PSPACE-complete without shrinking
q coNP-complete without growing

n RT[Z,∩]: decidable in coNEXP



2nd Int’l Summer School in Computation Logic 
June 17, 2004 Ninghui Li (Purdue University) 25

Containment Analysis in RT[]

n Two cases that X.u contains K.r
1. the containment is forced by statements in P and 

cannot be removed
2. the containment is caused by nonexistence of 

statements
q e.g., when no statement defines K.r and K.r cannot 

grow, K.r is always empty, and thus is contained in 
every role

q direct translation of this intuition into a positive logic 
program does not work
q e.g., P={“K.r←K1.r1”, “K1.r1←K.r”, “K.r←K2”, “X.u ←K2”},  

both K.r and K1.r1 are fixed, does X.u contain K.r?
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The Containment Program for RT[]: 
BCP(P,R)
n Starts from LB(P,R)
n Add  fc(?X,?u,?X,?u)
n For each K.r ← K1.r1 in P|R, add 

fc(K,r,?Z,?w) :- fc(K1,r1,?Z,?w)
n For each K.r that can grow, add 

nc(?X,?u,K,r) :- ~ fc(?X,?u,K,r) 
n For each K.r ← K1 in P s.t. K.r can’t grow, add

nc(?X,?u,K,r) :- ~ fc(?X,?u,K,r),  ~ lb(?X,?u,K1)
n For each K.r ← K1.r1 in P s.t. K.r can’t grow, add

nc(?X,?u,K,r) :- ~ fc(?X,?u,K,r), nc(?X,?u,K1,r1)
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Solving Containment Analysis in RT[] 
Using Negation
n BCP(P,R) is stratified
q we use the perfect model semantics

n Theorem: BCP(P,R) |= nc(X,u, K,r) is true iff. X.u
does not contain K.r
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Containment Analysis in RT[∩] is coNP-
complete
n It is in coNP, because a counter example can be 

found by considering just one new principal
n That it is coNP-hard is shown by reducing the 

monotone 3-SAT problem to it
q intersection is conjunction, 
q a role may be defined by multiple statements 

(implicit disjunction)
q containment equivalent to determining validity of 

formulas like  ϕ1 ⇐  ϕ2
n where ϕ1 are  ϕ2 positive propositional formulas
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Containment Analysis in RT[Z] 

n First consider the case that no shrinking is 
allowed in R

n View statements as rewriting rules
q K.r ← K1 K r    to K1

q K.r ← K1.r1 K r    to K1 r1

q K.r ← K.r1.r2 K r    to K r1 r2

n A string has the form K r1 r2 r3 r4

n Lemma 0: SP[P] proves m(K,r, K1) iff. the string 
K r rewrites into K1 using P
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RT[Z] and Pushdown Systems

r

Stack:

State:  K

u1

u2

...

Apply the rewriting rule:
K r  to K r1 r2

r2

Stack:

State: K

u1

u2

...

r1

A string corresponds to a configuration

“rewrites into” equivalent to “reaches”
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Characteristic Set of a Role

n Given P and R (shrinking forbidden), define:
q strsP[K.r] = sets of strings K r rewrites to
q  χR = the set consisting of 

n all principals in P
n all strings K1 r1 r2 r3 r4 where K1 appears in P and 

K1 r1 is g-unrestricted
q χP,R[K.r] = strsP[K.r] ∩ χR

n each string K1 r1 r2 r3 r4 in χP,R[K.r] is a distinct way 
of adding a member to K.r

n Lemma 1: Given P, R, X.u, K.r, mem[X.u] ⊇
mem[K.r] is necessary iff. χP,R[X.u] ⊇ χP,R[K.r]
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Lemma 2:

n Lemma 2: Given P, R (shrinking forbidden), and 
K.r, χP,R[K.r] is recognized by an NFA that has 
size poly in |P|+|R|

n Proof: χP,R[K.r] = strsP[K.r] ∩ χR

q strsP[K.r] is recognized by a poly-size NFA
n Bouajjani, Esparza & Maler: “Reachability Analysis of 

Pushdown Automata: Application to Model-Checking”, 
CONCUR’97

q χR is recognized by a poly-size NFA
q χP,R[K.r] is recognized by a poly-size NFA
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Containment Analysis in RT[Z] is in 
PSPACE
n Theorem: Given P, R (shrinking forbidden), X.u, 

K.r, determining whether mem[X.u] ⊇ mem[K.r] 
is necessary is in PSPACE
q follows from Lemma 1 and 2 and the fact that 

determining containment of languages accepted 
by NFA’s is in PSPACE
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Containment Analysis in RT[Z] is  
PSPACE-hard
n Theorem: Given P, R (shrinking forbidden), X.u, 

K.r, determining whether mem[X.u] ⊇ mem[K.r] 
is necessary is PSPACE-hard
q Reducing determining containment of languages 

over the alphabet {0,1} that are defined by right-
linear grammars to the problem.



2nd Int’l Summer School in Computation Logic 
June 17, 2004 Ninghui Li (Purdue University) 35

Proof of PSPACE-hardness

n From grammar to P:
q N1 ::= N2 1 K.N1 = K.N2.r1

q N2 ::= 0 K.N2 = K1.r0

n The restriction rule R:
q all K.Ni’s, K.ri’s, and K1.Ni’s are g-restricted
q other roles, i.e., K1.r0 and K1.r1, are growth 

unrestricted

n Language[N1] maps to χP,R[K.N1]
q N1 generates 1010 iff. K1.r1.r0.r1.r0∈χP,R [K.N1]
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Theorem (shrinking allowed)

n Given P, R (shrinking allowed), X.u, K.r, 
determining whether mem[X.u] ⊇ mem[K.r] is 
necessary is in PSPACE
q For every subset of P that can be obtained by 

legally removing statements in P, run the 
algorithm that does not allow shrinking



2nd Int’l Summer School in Computation Logic 
June 17, 2004 Ninghui Li (Purdue University) 37

Containment Analysis in RT[Z ∩]

n Theorem: Given P (in RT[Z ∩]), R, X.u, K.r, 
determining whether mem[X.u] ⊇ mem[K.r] is 
necessary is in coNEXP
q although infinitely many new principals and 

statements may be added, if a counter example 
exists, then a counter example of size exponential 
in P exists

q if two new principals have the same memberships 
in all roles appearing in P, then the two principals 
can be collapsed into one
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Summary of Complexities for 
Containment Analysis

Type-1 and 2: 
PTIME

Type-1, 2, and 3: 
PSPACE-complete

Type-1, 2, and 4: 
coNP-complete

Type-1, 2, 3, and 4: 
PSPACE-hard, coNEXP


