Logic and Logic Programming in Distributed Access Control (Part Two)

Ninghui Li Department of Computer Science and CERIAS Purdue University

2nd Int'l Summer School in Computation Logic June 17, 2004

Ninghui Li (Purdue University)

Security Analysis in Trust Management

Publications:

 Li, Mitchell & Winsborough: "Beyond Proof-of-Compliance: Security Analysis in Trust Management", JACM 2005. Conference version in SSP 2003.

The Abstract Security Analysis Problem

- Given an initial state P,
 - a query Q,
 - and a rule R that restricts how states can change (defines reachability among states);

Ask

- Is Q possible? (existential)
 - whether \$ reachable P' s.t. P' ▶ Q
- Is Q necessary? (universal)
 - whether " reachable P' , P' ► Q

Statements in $RT_0 = RT[\Leftrightarrow, \cap]$

- Type-1: K.r ← K₁ □ mem[K.r] $\hat{\mathbf{E}}$ {K₁} □ K_{HR}.manager ← K_{Alice}
- Type-2: K.r ← K₁.r₁ □ mem[K.r] $\hat{\mathbf{E}}$ mem[K₁.r₁] □ K_{SSO}.admin ← K_{HR}.manager

Statements in $RT[\Leftrightarrow, \cap]$

Type-3: $K.r \leftarrow K.r_1.r_2$

Let mem[K.r₁] be {K₁, K₂, ..., K_n} mem[K.r] **Ê** mem[K₁.r₂] **È** mem[K₂.r₂] **È** ¼ **È** mem[K_n.r₂]

 $\ \ \, \square \ \ \, K_{SSO}.delegAccess \leftarrow K_{SSO}.admin.access$

■ Type-4: K.r ← K₁.r₁ Ç K₂.r₂ □ mem[K.r] Ê mem[K₁.r₂] Ç mem[K₂.r₂] □ K_{SSO}.access←K_{SSo}.delegAccessÇK_{HR}.employee

The Query Q

- Form-1:
- Form-2:
- Form-3:

$$\begin{split} & \text{mem}[\text{K.r}] \; \boldsymbol{\hat{E}} \; \{\text{K}_{1}, \dots, \text{K}_{n}\} \; \boldsymbol{\hat{k}} \\ & \{\text{K}_{1}, \dots, \text{K}_{n}\} \; \boldsymbol{\hat{E}} \; \text{mem}[\text{K.r}] \; \boldsymbol{\hat{k}} \\ & \text{mem}[\text{K}_{1}.\text{r}_{1}] \; \boldsymbol{\hat{E}} \; \text{mem}[\text{K.r}] \; \boldsymbol{\hat{k}} \end{split}$$

The Semantic Relation

• A statement \Rightarrow a Datalog rule

- K.r ← K₂ ⇒ m(K, r, K₂)
 K.r ← K₁.r₁ ⇒ m(K, r, z) :- m(K₁, r₁, z)
 ...
- A state P ⇒ a Datalog program SP[P]
 mem[K.r] { K' | m(K,r,K') is in the minimal Herbrand model of SP[P] }

Example Queries & Answers

- 1. K_{SSO} .access $\leftarrow K_{SSO}$.admin
- 2. K_{SSO} .admin $\leftarrow K_{HR}$.manager
- 3. K_{HR} .employee $\leftarrow K_{HR}$.manager
- 4. K_{HR} .manager $\leftarrow K_{Alice}$
- 5. K_{HR} .employee $\leftarrow K_{David}$

 $\begin{array}{ll} mem[K_{SSO}.access] \, \boldsymbol{\widehat{E}} \, \{K_{David}\}? & No \\ \{K_{Alice}, \, K_{David}\} \, \boldsymbol{\widehat{E}} \, mem[K_{SSO}.employee]? & Yes \\ mem[K_{HR}.employee] \, \boldsymbol{\widehat{E}} \, mem[K_{SSO}.access]? & Yes \end{array}$

The Restriction Rule R

R=(G,S)

G is a set of growth-restricted roles

• if $K.r \in G$, then cannot add "K.r $\leftarrow \dots$ "

S is a set of shrink-restricted roles

• if $K.r \in S$, then cannot remove "K.r $\leftarrow \dots$ "

Motivation:

Definitions of roles that are not under one's control may change

Sample Analysis Queries

- Simple safety (existential form-1):
 □ Is mem[K.r] ⊇ {K₁} possible?
- Simple availability (universal form-1):
 □ Is mem[K.r] ⊇ {K₁} necessary?
- Bounded safety (universal form-2):
 - □ Is $\{K_1, ..., K_n\} \supseteq mem[K.r]$ necessary?
- Containment (universal form-3):
 □ Is mem[K₁.r₁] ⊇ mem[K.r] necessary?

Security Analysis: Usage Cases

- Guarantee safety and availability properties of an access control system:
 - Properties one wants to guarantee are encoded in a set of queries & desirable answers
 - R represents how much control one has
 - parts not under one's control may change in R
 - parts under one's control are considered fixed in R
 - Before making changes, one can use analysis to guarantee properties are not violated

An Example

- 1. K_{SSO} .access $\leftarrow K_{SSO}$.admin
- K_{SSO} .access $\leftarrow K_{SSO}$.delegAccess $\bigcup K_{HR}$.employee
- K_{SSO} .admin $\leftarrow K_{HR}$.manager
- 4. K_{SSO} .delegAccess $\leftarrow K_{SSO}$.admin.access
- 5. K_{HR} .employee $\leftarrow K_{HR}$.manager
- 6. K_{HR} .employee $\leftarrow K_{HR}$.engineer
- 7. K_{HR} .manager $\leftarrow K_{Alice}$
- 8. K_{Alice} .access $\leftarrow K_{Bob}$

Legend: fixed can grow, can shrink

A Simple Availability Query

- 1. K_{SSO} .access $\leftarrow K_{SSO}$.admin
- 2. K_{sso} .access $\leftarrow K_{sso}$.delegAccess $\bigcirc K_{HR}$.employee
- 3. K_{SSO} .admin $\leftarrow K_{HR}$.manager
- 4. K_{sso} .delegAccess $\leftarrow K_{sso}$.admin.access
- 5. $K_{\rm HR}$.employee $K_{\rm HR}$.manager
- s. $K_{\rm FIR}$ amployee $\leftarrow K_{\rm FIR}$ anglineer
- 7. K_{HR} .manager $\leftarrow K_{Alice}$
- a. K_{Alice} .access $\leftarrow K_{\text{Bob}}$

Query:Is mem[K_{sso} .access] **Ê** {K_{Alice}} necessary?Answer:Yes. (Available)Why:Statments 1, 3, and 7 cannot be removed

2nd Int'l Summer School in Computation Logic June 17, 2004

Ninghui Li (Purdue University)

A Simple Safety Query

- 1. K_{sso} .access $\leftarrow K_{sso}$.admin
- $_{2.}$ K_{SSO}.access \leftarrow K_{SSO}.delegAccess \bigcirc K_{HR}.employee
- 3. K_{SSO} .admin $\leftarrow K_{HR}$.manager
- 4. K_{SSO} .delegAccess $\leftarrow K_{SSO}$.admin.access
- 5. K_{HR} employee $\leftarrow K_{HR}$ manager
- 6. K_{HR} .manager $\leftarrow K_{Alice}$
- 7. K_{HR} .employee $\leftarrow K_{HR}$.engineer
- 8. K_{Alice} .access $\leftarrow K_{Bob}$

Query:Is mem[K_{SSO}.access] $\supseteq \{K_{Eve}\}$ possible?Answer:Yes. (Unsafe)Why:Both K_{HR}.engineer and K_{Alice}.access may grow.

2nd Int'l Summer School in Computation Logic June 17, 2004

Ninghui Li (Purdue University)

A Containment Analysis Query about Safety

- 1. K_{SSO} .access $\leftarrow K_{SSO}$.admin
- K_{SSO} .access $\leftarrow K_{SSO}$.delegAccess $\mathbf{C} K_{HR}$.employee
- 3. K_{SSO} .admin $\leftarrow K_{HR}$.manager
- 4. K_{sso} .delegAccess $\leftarrow K_{sso}$.admin.access
- 5. K_{HR} .employee $\leftarrow K_{HR}$.manager
- s. $K_{\rm HR}$.employee $K_{\rm HR}$.engineer
- x $K_{\rm HR}$ manager \leftarrow $K_{\rm Alice}$
- a. K_{Alice} .access $\leftarrow K_{\text{Bob}}$
- Query: Is mem[K_{HR} .employee] \supseteq mem[K_{SSO} .access] necessary? Answer: Yes. (Safe)

Why: K_{SSO}.access and K_{SSO}.admin cannot grow and Statement 5 cannot be removed.

An Containment Analysis Query about Availability

- 1. K_{SSO} .access $\leftarrow K_{SSO}$.admin
- 2. K_{sso} .access $\leftarrow K_{sso}$.delegAccess ζ $K_{\rm HR}$.employee
- 3. K_{SSO} .admin $\leftarrow K_{HR}$.manager
- 4. K_{sso} .delegAccess $\leftarrow K_{sso}$.admin.access
- 5. $K_{\rm FIR}$ amployee $\leftarrow K_{\rm FIR}$ manager
- s. $K_{\rm FIR}$ amployee $\leftarrow K_{\rm FIR}$ anglineer
- x. $K_{\rm HR}$.manager $\leftarrow K_{\rm Alice}$
- a. K_{Alice} . access $\leftarrow K_{\text{Bob}}$

Query:Is mem[K_{SSO} .access] \supseteq mem[K_{HR} .manager] necessary?Answer:Yes. (Available)Why:Statements 1 and 3 cannot be removed

Answering Form-1 and Form-2 Queries: Intuitions (1)

- RT[�, ∩] is monotonic
 - more statements derive more role memberships
- Form-1 queries are monotonic
 - mem[K.r] **Ê** {K1,...,Kn}
 - universal form-1 queries can be answered by considering a lower-bound (minimum) state
 - existential form-1 queries can be answered by considering an upper-bound (maximal) state

Answering Form-1 and Form-2 Queries: Intuitions (2)

Form-2 queries are anti-monotonic

- □ {K1,...,Kn} **Ê** mem[K.r]
- universal form-2 queries can be answered by considering the upper-bound state
- existential form-1 queries can be answered by considering the lower-bound state
- Given P and R, the lower-bound state uniquely exists, we denote it P_R
 - it can be reached by removing all removable statements

The Lower-Bound Program LB(P,R)

- For each K.r ← K₁ in P|_R, add lb(K, r, K₁)
- For each K.r \leftarrow K₁.r₁ in P|_R, add lb(K, r, ?Z) :- lb(K₁, r₁, ?Z)
- For each K.r \leftarrow K.r₁.r₂ in P|_R, add lb(K, r, ?Z) :- lb(K, r₁, ?Y), lb(?Y, r₂, ?Z)
- For each K.r \leftarrow K₁.r₁ **Ç** K₂.r₂ in P|_R, add lb(K, r, ?Z) :- lb(K₁, r₁, ?Z), lb(K₂, r₂, ?Z)

Using the Lower-Bound Program

To answer whether a form-1 query mem[K.r] $\hat{\mathbf{E}}$ {K₁,...,K_n} is necessary, check whether $LB(P,R) \models Ib(K,r,K_1) \land \dots \land Ib(K,r,K_n)$ To answer whether a form-2 query $\{K_1, \ldots, K_n\}$ **\hat{E}** mem[K.r] is possible check whether $\{K_1,\ldots,K_n\} \widehat{\mathbf{E}} \{ Z \mid LB(P,R) \mid = Ib(K,r,Z) \}$

The Upper-Bound Program UB(P,R)

- Add ub(T, ?r, ?Z)
- For each K.r that can grow, add ub(K, r, ?Z)
- For each K.r \leftarrow K₁ in P, add ub(K, r, K₁)
- For each K.r \leftarrow K₁.r₁ in P, add ub(K, r, ?Z) :- ub(K₁, r₁, ?Z)
- For each K.r ← K.r₁.r₂ in P, add ub(K, r, ?Z) :- ub(K, r₁, ?Y), ub(?Y, r₂, ?Z)
- For each K.r ← K₁.r₁ Ç K₂.r₂ in P, add ub(K, r, ?Z) :- ub(K₁, r₁, ?Z), ub(K₂, r₂, ?Z)

Using the Upper-Bound Program

- A form-1 query mem[K.r] Ê {K₁,...,K_n} is possible iff. any of the following is true,
 - K.r is not growth restricted
 - □ up(K,r,T) is true
 - $\Box UB(P,R) \models ub(K,r,K_1) \land \dots \land ub(K,r,K_n)$
- A form-2 query {K₁,...,K_n} Ê mem[K.r] is necessary iff.
 - $\Box \{K_1, \ldots, K_n\} \,\widehat{\mathbf{E}} \{ Z \mid UB(P,R) \mid = ub(K,r,Z) \}$

What about Form-3 Queries?

- Form-3: $mem[K_1.r_1] \supseteq mem[K.r]$
- Neither monotonic nor anti-monotonic
 cannot use the minimal state or the maximal state
- Difficulty: adding new members to K.r may affect
 K₁.r₁
- We only consider analysis asking whether mem[K₁.r₁] ⊇ mem[K.r] is necessary
 we call this containment analysis

Complexity Results for Containment Analysis

- RT[]: just type 1 and 2 statements
 containment analysis is in PTIME
- RT[∩]: type 1, 2, and 4 statements
 □ containment analysis is coNP-complete
- RT[←]: type 1, 2, and 3 statements
 - containment analysis is PSPACE-complete
 - remains PSPACE-complete without shrinking
 - coNP-complete without growing
- RT[⇐,∩]: decidable in coNEXP

Containment Analysis in RT[]

- Two cases that X.u contains K.r
- 1. the containment is forced by statements in P and cannot be removed
- 2. the containment is caused by nonexistence of statements
 - e.g., when no statement defines K.r and K.r cannot grow, K.r is always empty, and thus is contained in every role
 - direct translation of this intuition into a positive logic program does not work
 - e.g., $P = \{ K.r \leftarrow K_1.r_1^{n}, K_1.r_1 \leftarrow K.r^{n}, K.r \leftarrow K_2^{n}, X.u \leftarrow K_2^{n} \}$, both K.r and K_1.r_1 are fixed, does X.u contain K.r?

The Containment Program for RT[]: BCP(P,R)

- Starts from LB(P,R)
- Add fc(?X,?u,?X,?u)
- For each K.r \leftarrow K₁.r₁ in P|_R, add fc(K,r,?Z,?w) :- fc(K₁,r₁,?Z,?w)
- For each K.r that can grow, add nc(?X,?u,K,r) :- ~ fc(?X,?u,K,r)
- For each K.r ← K₁ in P s.t. K.r can't grow, add nc(?X,?u,K,r) :- ~ fc(?X,?u,K,r), ~ lb(?X,?u,K₁)
- For each K.r ← K₁.r₁ in P s.t. K.r can't grow, add nc(?X,?u,K,r) :- ~ fc(?X,?u,K,r), nc(?X,?u,K₁,r₁)

Solving Containment Analysis in RT[] Using Negation

- BCP(P,R) is stratified
 - we use the perfect model semantics
- Theorem: BCP(P,R) |= nc(X,u, K,r) is true iff. X.u does not contain K.r

Containment Analysis in $RT[\cap]$ is coNP-complete

- It is in coNP, because a counter example can be found by considering just one new principal
- That it is coNP-hard is shown by reducing the monotone 3-SAT problem to it
 - intersection is conjunction,
 - a role may be defined by multiple statements (implicit disjunction)
 - containment equivalent to determining validity of formulas like $\varphi 1 \leftarrow \varphi 2$
 - where φ 1 are φ 2 positive propositional formulas

2nd Int'l Summer School in Computation Logic June 17, 2004

Containment Analysis in RT[⇐]

- First consider the case that no shrinking is allowed in R
- View statements as rewriting rules
 - □ K.r \leftarrow K₁ K r to K₁ □ K.r \leftarrow K₁.r₁ K r to K₁ r₁
 - $\Box K.r \leftarrow K.r_1.r_2 \qquad Kr \quad to \qquad Kr_1r_2$
- A string has the form K $r_1 r_2 r_3 r_4$
- Lemma 0: SP[P] proves m(K,r, K₁) iff. the string K r rewrites into K₁ using P

RT[⇐] and Pushdown Systems

State: K

State: K

A string corresponds to a configuration

"rewrites into" equivalent to "reaches"

2nd Int'l Summer School in Computation Logic June 17, 2004

Ninghui Li (Purdue University)

Characteristic Set of a Role

Given P and R (shrinking forbidden), define:

 \Box strs_P[K.r] = sets of strings K r rewrites to

- χ_R = the set consisting of
 - all principals in P
 - all strings K₁ r₁ r₂ r₃ r₄ where K₁ appears in P and K₁ r₁ is g-unrestricted
- $\Box \ \chi_{\mathsf{P},\mathsf{R}}[\mathsf{K}.\mathsf{r}] = \mathsf{strs}_{\mathsf{P}}[\mathsf{K}.\mathsf{r}] \ \mathbf{C} \ \chi_{\mathsf{R}}$
 - each string K₁ r₁ r₂ r₃ r₄ in χ_{P,R}[K.r] is a distinct way of adding a member to K.r
- Lemma 1: Given P, R, X.u, K.r, mem[X.u] Ê mem[K.r] is necessary iff. χ_{P,R}[X.u] Ê χ_{P,R}[K.r]

Lemma 2:

- Lemma 2: Given P, R (shrinking forbidden), and K.r, χ_{P,R}[K.r] is recognized by an NFA that has size poly in |P|+|R|
- Proof: $\chi_{P,R}[K.r] = \text{strs}_{P}[K.r] \mathbf{C} \chi_{R}$

strs_P[K.r] is recognized by a poly-size NFA

- Bouajjani, Esparza & Maler: "Reachability Analysis of Pushdown Automata: Application to Model-Checking", CONCUR'97
- χ_R is recognized by a poly-size NFA

• $\chi_{P,R}[K.r]$ is recognized by a poly-size NFA

Containment Analysis in RT[⇐] is in PSPACE

- Theorem: Given P, R (shrinking forbidden), X.u, K.r, determining whether mem[X.u] Ê mem[K.r] is necessary is in PSPACE
 - follows from Lemma 1 and 2 and the fact that determining containment of languages accepted by NFA's is in PSPACE

Containment Analysis in RT[⇐] is PSPACE-hard

- Theorem: Given P, R (shrinking forbidden), X.u, K.r, determining whether mem[X.u] Ê mem[K.r] is necessary is PSPACE-hard
 - Reducing determining containment of languages over the alphabet {0,1} that are defined by rightlinear grammars to the problem.

Proof of PSPACE-hardness

From grammar to P:

- The restriction rule R:
 - □ all K.N_i's, K.r_i's, and K₁.N_i's are g-restricted
 - other roles, i.e., K₁.r₀ and K₁.r₁, are growth unrestricted
- Language[N₁] maps to χ_{P,R}[K.N₁]
 N₁ generates 1010 iff. K₁.r₁.r₀.r₁.r₀Î χ_{P,R} [K.N₁]

Theorem (shrinking allowed)

- Given P, R (shrinking allowed), X.u, K.r, determining whether mem[X.u] Ê mem[K.r] is necessary is in PSPACE
 - For every subset of P that can be obtained by legally removing statements in P, run the algorithm that does not allow shrinking

Containment Analysis in $RT[\Leftrightarrow \cap]$

- Theorem: Given P (in RT[⇐ ∩]), R, X.u, K.r, determining whether mem[X.u] Ê mem[K.r] is necessary is in coNEXP
 - although infinitely many new principals and statements may be added, if a counter example exists, then a counter example of size exponential in P exists
 - if two new principals have the same memberships in all roles appearing in P, then the two principals can be collapsed into one

Summary of Complexities for Containment Analysis

