
Ninghui Li (Purdue University)
2nd Int’l Summer School in Computation Logic
June 17, 2004

Logic and Logic Programming
in Distributed Access Control
(Part Two)

Ninghui Li
Department of Computer Science

and CERIAS
Purdue University

2nd Int’l Summer School in Computation Logic
June 17, 2004 Ninghui Li (Purdue University) 2

Security Analysis in Trust Management

n Publications:
q Li, Mitchell & Winsborough: “Beyond Proof-of-Compliance:

Security Analysis in Trust Management”, JACM 2005.
Conference version in SSP 2003.

2nd Int’l Summer School in Computation Logic
June 17, 2004 Ninghui Li (Purdue University) 3

The Abstract Security Analysis Problem

n Given an initial state P,
q a query Q,
q and a rule R that restricts how states can change

(defines reachability among states);
n Ask

q Is Q possible? (existential)
n whether ∃ reachable P’s.t. P’u Q

q Is Q necessary? (universal)
n whether ∀ reachable P’, P’u Q

2nd Int’l Summer School in Computation Logic
June 17, 2004 Ninghui Li (Purdue University) 4

Statements in RT0= RT[Z, ∩]

n Type-1: K.r ← K1

q mem[K.r] ⊇ {K1}
q KHR.manager ← KAlice

n Type-2: K.r ← K1.r1

q mem[K.r] ⊇ mem[K1.r1]
q KSSO.admin ← KHR.manager

2nd Int’l Summer School in Computation Logic
June 17, 2004 Ninghui Li (Purdue University) 5

Statements in RT[Z, ∩]

n Type-3: K.r ← K.r1.r2

q Let mem[K.r1] be {K1, K2, …, Kn}
mem[K.r] ⊇ mem[K1.r2] ∪ mem[K2.r2]

∪ … ∪ mem[Kn.r2]
q KSSO.delegAccess ← KSSO.admin.access

n Type-4: K.r ← K1.r1 ∩ K2.r2

q mem[K.r] ⊇ mem[K1.r2] ∩ mem[K2.r2]
q KSSO.access←KSSo.delegAccess∩KHR.employee

2nd Int’l Summer School in Computation Logic
June 17, 2004 Ninghui Li (Purdue University) 6

The Query Q

n Form-1: mem[K.r] ⊇ {K1,…,Kn} ?
n Form-2: {K1,…,Kn} ⊇ mem[K.r] ?
n Form-3: mem[K1.r1] ⊇ mem[K.r] ?

2nd Int’l Summer School in Computation Logic
June 17, 2004 Ninghui Li (Purdue University) 7

The Semantic Relation u

n A statement ⇒ a Datalog rule
q K.r ← K2 ⇒ m(K, r, K2)
q K.r ← K1.r1 ⇒ m(K, r, z) :- m(K1, r1, z)
q …

n A state P ⇒ a Datalog program SP[P]
q mem[K.r] ≡ { K’| m(K,r,K’) is in the minimal

Herbrand model of SP[P] }

2nd Int’l Summer School in Computation Logic
June 17, 2004 Ninghui Li (Purdue University) 8

Example Queries & Answers

1. KSSO.access ← KSSO.admin
2. KSSO.admin ← KHR.manager
3. KHR.employee ← KHR.manager
4. KHR.manager ← KAlice

5. KHR.employee ← KDavid

mem[KSSO.access] ⊇ {KDavid}? No
{KAlice, KDavid} ⊇ mem[KSSO.employee]? Yes
mem[KHR.employee] ⊇ mem[KSSO.access]? Yes

2nd Int’l Summer School in Computation Logic
June 17, 2004 Ninghui Li (Purdue University) 9

The Restriction Rule R

n R=(G,S)
q G is a set of growth-restricted roles

n if K.r ∈ G, then cannot add “K.r ← …”

q S is a set of shrink-restricted roles
n if K.r ∈ S, then cannot remove “K.r ← …”

n Motivation:
q Definitions of roles that are not under one’s

control may change

2nd Int’l Summer School in Computation Logic
June 17, 2004 Ninghui Li (Purdue University) 10

Sample Analysis Queries

n Simple safety (existential form-1):
q Is mem[K.r] ⊇ {K1} possible?

n Simple availability (universal form-1):
q Is mem[K.r] ⊇ {K1} necessary?

n Bounded safety (universal form-2):
q Is {K1,…,Kn} ⊇ mem[K.r] necessary?

n Containment (universal form-3):
q Is mem[K1.r1] ⊇ mem[K.r] necessary?

2nd Int’l Summer School in Computation Logic
June 17, 2004 Ninghui Li (Purdue University) 11

Security Analysis: Usage Cases

n Guarantee safety and availability properties of
an access control system:
q Properties one wants to guarantee are encoded

in a set of queries & desirable answers
q R represents how much control one has

n parts not under one’s control may change in R
n parts under one’s control are considered fixed in R

q Before making changes, one can use analysis to
guarantee properties are not violated

2nd Int’l Summer School in Computation Logic
June 17, 2004 Ninghui Li (Purdue University) 12

An Example

1. KSSO.access ← KSSO.admin
2. KSSO.access ← KSSO.delegAccess ∩ KHR.employee
3. KSSO.admin ← KHR.manager
4. KSSO.delegAccess ← KSSO.admin.access
5. KHR.employee ← KHR.manager
6. KHR.employee ← KHR.engineer
7. KHR.manager ← KAlice

8. KAlice.access ← KBob

Legend: fixed
can grow, can shrink

2nd Int’l Summer School in Computation Logic
June 17, 2004 Ninghui Li (Purdue University) 13

A Simple Availability Query

1. KSSO.access ← KSSO.admin
2.2.2. KKKSSOSSOSSO.access .access .access ←←← KKKSSOSSOSSO.delegAccess.delegAccess.delegAccess ∩∩∩ KKKHRHRHR.employee.employee.employee
3. KSSO.admin ← KHR.manager

4.4.4. KKKSSOSSOSSO.delegAccess.delegAccess.delegAccess ←←← KKKSSOSSOSSO.admin.access.admin.access.admin.access
5.5.5. KKKHRHRHR.employee.employee.employee ←←← KKKHRHRHR.manager.manager.manager
6.6.6. KKKHRHRHR.employee.employee.employee ←←← KKKHRHRHR.engineer.engineer.engineer
7. KHR.manager ← KAlice

8.8.8. KKKAliceAliceAlice.access.access.access ←←← KKKBobBobBob

Query: Is mem[KSSO .access] ⊇ {KAlice} necessary?
Answer: Yes. (Available)
Why: Statments 1, 3, and 7 cannot be removed

2nd Int’l Summer School in Computation Logic
June 17, 2004 Ninghui Li (Purdue University) 14

1.1.1. KKKSSOSSOSSO.access.access.access ←←← KKKSSOSSOSSO.admin.admin.admin
2. KSSO.access ← KSSO.delegAccess ∩ KHR.employee
3. KSSO.admin ← KHR.manager
4. KSSO.delegAccess ← KSSO.admin.access
5.5.5. KKKHRHRHR.employee.employee.employee ←←← KKKHRHRHR.manager.manager.manager
6. KHR.manager ← KAlice

7. KHR.employee ← KHR.engineer
8. KAlice.access ← KBob

A Simple Safety Query

Query: Is mem[KSSO.access] ⊇ {KEve} possible?
Answer: Yes. (Unsafe)
Why: Both KHR.engineer and KAlice.access may grow.

2nd Int’l Summer School in Computation Logic
June 17, 2004 Ninghui Li (Purdue University) 15

A Containment Analysis Query about
Safety

1. KSSO.access ← KSSO.admin
2. KSSO.access ← KSSO.delegAccess ∩ KHR.employee
3. KSSO.admin ← KHR.manager

4.4.4. KKKSSOSSOSSO.delegAccess.delegAccess.delegAccess ←←← KKKSSOSSOSSO.admin.access.admin.access.admin.access
5. KHR.employee ← KHR.manager
6.6.6. KKKHRHRHR.employee.employee.employee ←←← KKKHRHRHR.engineer.engineer.engineer
7.7.7. KKKHRHRHR.manager.manager.manager ←←← KKKAliceAliceAlice

8.8.8. KKKAliceAliceAlice.access.access.access ←←← KKKBobBobBob

Query: Is mem[KHR.employee] ⊇ mem[KSSO.access] necessary?
Answer: Yes. (Safe)
Why: KSSO.access and KSSO.admin cannot grow and

Statement 5 cannot be removed.

2nd Int’l Summer School in Computation Logic
June 17, 2004 Ninghui Li (Purdue University) 16

An Containment Analysis Query about
Availability

1. KSSO.access ← KSSO.admin
2.2.2. KKKSSOSSOSSO.access .access .access ←←← KKKSSOSSOSSO.delegAccess.delegAccess.delegAccess ∩∩∩ KKKHRHRHR.employee.employee.employee
3. KSSO.admin ← KHR.manager

4.4.4. KKKSSOSSOSSO.delegAccess.delegAccess.delegAccess ←←← KKKSSOSSOSSO.admin.access.admin.access.admin.access
5.5.5. KKKHRHRHR.employee.employee.employee ←←← KKKHRHRHR.manager.manager.manager
6.6.6. KKKHRHRHR.employee.employee.employee ←←← KKKHRHRHR.engineer.engineer.engineer
7.7.7. KKKHRHRHR.manager.manager.manager ←←← KKKAliceAliceAlice

8.8.8. KKKAliceAliceAlice.access.access.access ←←← KKKBobBobBob

Query: Is mem[KSSO.access] ⊇ mem[KHR.manager] necessary?
Answer: Yes. (Available)
Why: Statements 1 and 3 cannot be removed

2nd Int’l Summer School in Computation Logic
June 17, 2004 Ninghui Li (Purdue University) 17

Answering Form-1 and Form-2 Queries:
Intuitions (1)
n RT[Z, ∩] is monotonic
q more statements derive more role memberships

n Form-1 queries are monotonic
q mem[K.r] ⊇ {K1,…,Kn}
q universal form-1 queries can be answered by

considering a lower-bound (minimum) state
q existential form-1 queries can be answered by

considering an upper-bound (maximal) state

2nd Int’l Summer School in Computation Logic
June 17, 2004 Ninghui Li (Purdue University) 18

Answering Form-1 and Form-2 Queries:
Intuitions (2)
n Form-2 queries are anti-monotonic
q {K1,…,Kn} ⊇ mem[K.r]
q universal form-2 queries can be answered by

considering the upper-bound state
q existential form-1 queries can be answered by

considering the lower-bound state
n Given P and R, the lower-bound state uniquely

exists, we denote it P|R
q it can be reached by removing all removable

statements

2nd Int’l Summer School in Computation Logic
June 17, 2004 Ninghui Li (Purdue University) 19

The Lower-Bound Program LB(P,R)

n For each K.r ← K1 in P|R, add
lb(K, r, K1)

n For each K.r ← K1.r1 in P|R, add
lb(K, r, ?Z) :- lb(K1, r1, ?Z)

n For each K.r ← K.r1.r2 in P|R, add
lb(K, r, ?Z) :- lb(K, r1, ?Y), lb(?Y, r2, ?Z)

n For each K.r ← K1.r1 ∩ K2.r2 in P|R, add
lb(K, r, ?Z) :- lb(K1, r1, ?Z), lb(K2, r2, ?Z)

2nd Int’l Summer School in Computation Logic
June 17, 2004 Ninghui Li (Purdue University) 20

Using the Lower-Bound Program

n To answer whether a form-1 query
mem[K.r] ⊇ {K1,…,Kn} is necessary,

q check whether
LB(P,R) |= lb(K,r,K1) ∧…∧ lb(K,r,Kn)

n To answer whether a form-2 query
{K1,…,Kn} ⊇ mem[K.r] is possible

q check whether
{K1,…,Kn} ⊇ { Z | LB(P,R) |= lb(K,r,Z) }

2nd Int’l Summer School in Computation Logic
June 17, 2004 Ninghui Li (Purdue University) 21

The Upper-Bound Program UB(P,R)

n Add ub(T, ?r, ?Z)
n For each K.r that can grow, add ub(K, r, ?Z)
n For each K.r ← K1 in P, add ub(K, r, K1)
n For each K.r ← K1.r1 in P, add

ub(K, r, ?Z) :- ub(K1, r1, ?Z)
n For each K.r ← K.r1.r2 in P, add

ub(K, r, ?Z) :- ub(K, r1, ?Y), ub(?Y, r2, ?Z)
n For each K.r ← K1.r1 ∩ K2.r2 in P, add

ub(K, r, ?Z) :- ub(K1, r1, ?Z), ub(K2, r2, ?Z)

2nd Int’l Summer School in Computation Logic
June 17, 2004 Ninghui Li (Purdue University) 22

Using the Upper-Bound Program

n A form-1 query mem[K.r] ⊇ {K1,…,Kn} is
possible iff. any of the following is true,
q K.r is not growth restricted
q up(K,r,T) is true
q UB(P,R) |= ub(K,r,K1) ∧…∧ ub(K,r,Kn)

n A form-2 query {K1,…,Kn} ⊇ mem[K.r] is
necessary iff.
q {K1,…,Kn} ⊇ { Z | UB(P,R) |= ub(K,r,Z) }

2nd Int’l Summer School in Computation Logic
June 17, 2004 Ninghui Li (Purdue University) 23

What about Form-3 Queries?

n Form-3: mem[K1.r1] ⊇ mem[K.r]
n Neither monotonic nor anti-monotonic
q cannot use the minimal state or the maximal state

n Difficulty: adding new members to K.r may affect
K1.r1

n We only consider analysis asking whether
mem[K1.r1] ⊇ mem[K.r] is necessary
q we call this containment analysis

2nd Int’l Summer School in Computation Logic
June 17, 2004 Ninghui Li (Purdue University) 24

Complexity Results for Containment
Analysis
n RT[]: just type 1 and 2 statements

q containment analysis is in PTIME
n RT[∩]: type 1, 2, and 4 statements

q containment analysis is coNP-complete
n RT[Z]: type 1, 2, and 3 statements

q containment analysis is PSPACE-complete
q remains PSPACE-complete without shrinking
q coNP-complete without growing

n RT[Z,∩]: decidable in coNEXP

2nd Int’l Summer School in Computation Logic
June 17, 2004 Ninghui Li (Purdue University) 25

Containment Analysis in RT[]

n Two cases that X.u contains K.r
1. the containment is forced by statements in P and

cannot be removed
2. the containment is caused by nonexistence of

statements
q e.g., when no statement defines K.r and K.r cannot

grow, K.r is always empty, and thus is contained in
every role

q direct translation of this intuition into a positive logic
program does not work
q e.g., P={“K.r←K1.r1”, “K1.r1←K.r”, “K.r←K2”, “X.u ←K2”},

both K.r and K1.r1 are fixed, does X.u contain K.r?

2nd Int’l Summer School in Computation Logic
June 17, 2004 Ninghui Li (Purdue University) 26

The Containment Program for RT[]:
BCP(P,R)
n Starts from LB(P,R)
n Add fc(?X,?u,?X,?u)
n For each K.r ← K1.r1 in P|R, add

fc(K,r,?Z,?w) :- fc(K1,r1,?Z,?w)
n For each K.r that can grow, add

nc(?X,?u,K,r) :- ~ fc(?X,?u,K,r)
n For each K.r ← K1 in P s.t. K.r can’t grow, add

nc(?X,?u,K,r) :- ~ fc(?X,?u,K,r), ~ lb(?X,?u,K1)
n For each K.r ← K1.r1 in P s.t. K.r can’t grow, add

nc(?X,?u,K,r) :- ~ fc(?X,?u,K,r), nc(?X,?u,K1,r1)

2nd Int’l Summer School in Computation Logic
June 17, 2004 Ninghui Li (Purdue University) 27

Solving Containment Analysis in RT[]
Using Negation
n BCP(P,R) is stratified
q we use the perfect model semantics

n Theorem: BCP(P,R) |= nc(X,u, K,r) is true iff. X.u
does not contain K.r

2nd Int’l Summer School in Computation Logic
June 17, 2004 Ninghui Li (Purdue University) 28

Containment Analysis in RT[∩] is coNP-
complete
n It is in coNP, because a counter example can be

found by considering just one new principal
n That it is coNP-hard is shown by reducing the

monotone 3-SAT problem to it
q intersection is conjunction,
q a role may be defined by multiple statements

(implicit disjunction)
q containment equivalent to determining validity of

formulas like ϕ1 ⇐ ϕ2
n where ϕ1 are ϕ2 positive propositional formulas

2nd Int’l Summer School in Computation Logic
June 17, 2004 Ninghui Li (Purdue University) 29

Containment Analysis in RT[Z]

n First consider the case that no shrinking is
allowed in R

n View statements as rewriting rules
q K.r ← K1 K r to K1

q K.r ← K1.r1 K r to K1 r1

q K.r ← K.r1.r2 K r to K r1 r2

n A string has the form K r1 r2 r3 r4

n Lemma 0: SP[P] proves m(K,r, K1) iff. the string
K r rewrites into K1 using P

2nd Int’l Summer School in Computation Logic
June 17, 2004 Ninghui Li (Purdue University) 30

RT[Z] and Pushdown Systems

r

Stack:

State: K

u1

u2

...

Apply the rewriting rule:
K r to K r1 r2

r2

Stack:

State: K

u1

u2

...

r1

A string corresponds to a configuration

“rewrites into” equivalent to “reaches”

2nd Int’l Summer School in Computation Logic
June 17, 2004 Ninghui Li (Purdue University) 31

Characteristic Set of a Role

n Given P and R (shrinking forbidden), define:
q strsP[K.r] = sets of strings K r rewrites to
q χR = the set consisting of

n all principals in P
n all strings K1 r1 r2 r3 r4 where K1 appears in P and

K1 r1 is g-unrestricted
q χP,R[K.r] = strsP[K.r] ∩ χR

n each string K1 r1 r2 r3 r4 in χP,R[K.r] is a distinct way
of adding a member to K.r

n Lemma 1: Given P, R, X.u, K.r, mem[X.u] ⊇
mem[K.r] is necessary iff. χP,R[X.u] ⊇ χP,R[K.r]

2nd Int’l Summer School in Computation Logic
June 17, 2004 Ninghui Li (Purdue University) 32

Lemma 2:

n Lemma 2: Given P, R (shrinking forbidden), and
K.r, χP,R[K.r] is recognized by an NFA that has
size poly in |P|+|R|

n Proof: χP,R[K.r] = strsP[K.r] ∩ χR

q strsP[K.r] is recognized by a poly-size NFA
n Bouajjani, Esparza & Maler: “Reachability Analysis of

Pushdown Automata: Application to Model-Checking”,
CONCUR’97

q χR is recognized by a poly-size NFA
q χP,R[K.r] is recognized by a poly-size NFA

2nd Int’l Summer School in Computation Logic
June 17, 2004 Ninghui Li (Purdue University) 33

Containment Analysis in RT[Z] is in
PSPACE
n Theorem: Given P, R (shrinking forbidden), X.u,

K.r, determining whether mem[X.u] ⊇ mem[K.r]
is necessary is in PSPACE
q follows from Lemma 1 and 2 and the fact that

determining containment of languages accepted
by NFA’s is in PSPACE

2nd Int’l Summer School in Computation Logic
June 17, 2004 Ninghui Li (Purdue University) 34

Containment Analysis in RT[Z] is
PSPACE-hard
n Theorem: Given P, R (shrinking forbidden), X.u,

K.r, determining whether mem[X.u] ⊇ mem[K.r]
is necessary is PSPACE-hard
q Reducing determining containment of languages

over the alphabet {0,1} that are defined by right-
linear grammars to the problem.

2nd Int’l Summer School in Computation Logic
June 17, 2004 Ninghui Li (Purdue University) 35

Proof of PSPACE-hardness

n From grammar to P:
q N1 ::= N2 1 K.N1 = K.N2.r1

q N2 ::= 0 K.N2 = K1.r0

n The restriction rule R:
q all K.Ni’s, K.ri’s, and K1.Ni’s are g-restricted
q other roles, i.e., K1.r0 and K1.r1, are growth

unrestricted

n Language[N1] maps to χP,R[K.N1]
q N1 generates 1010 iff. K1.r1.r0.r1.r0∈χP,R [K.N1]

2nd Int’l Summer School in Computation Logic
June 17, 2004 Ninghui Li (Purdue University) 36

Theorem (shrinking allowed)

n Given P, R (shrinking allowed), X.u, K.r,
determining whether mem[X.u] ⊇ mem[K.r] is
necessary is in PSPACE
q For every subset of P that can be obtained by

legally removing statements in P, run the
algorithm that does not allow shrinking

2nd Int’l Summer School in Computation Logic
June 17, 2004 Ninghui Li (Purdue University) 37

Containment Analysis in RT[Z ∩]

n Theorem: Given P (in RT[Z ∩]), R, X.u, K.r,
determining whether mem[X.u] ⊇ mem[K.r] is
necessary is in coNEXP
q although infinitely many new principals and

statements may be added, if a counter example
exists, then a counter example of size exponential
in P exists

q if two new principals have the same memberships
in all roles appearing in P, then the two principals
can be collapsed into one

2nd Int’l Summer School in Computation Logic
June 17, 2004 Ninghui Li (Purdue University) 38

Summary of Complexities for
Containment Analysis

Type-1 and 2:
PTIME

Type-1, 2, and 3:
PSPACE-complete

Type-1, 2, and 4:
coNP-complete

Type-1, 2, 3, and 4:
PSPACE-hard, coNEXP

