Logic and Logic Programming in Distributed Access Control (Part One)

Ninghui Li
Department of Computer Science and CERIAS
Purdue University
Outline

- A brief introduction to trust management
- Logic-based semantics for SDSI
The Trust-Management (TM) Approach

- Multi-centric access control using delegation
 - access control decisions are based on distributed policy statements issued by multiple principals
 - policy statements contain
 - attributes of principals such as permissions, roles, qualifications, characteristics
 - trust relationships
Common characteristics of TM systems

- Use public-key certificates for non-local statements
- Treat public keys as principals to be authorized
 - authentication consists of verifying signatures
Digital Signature Scheme

- Key space: a set of key pairs \((K, K^{-1})\)
 - \(K\) is the verification key and is publicly available
 - \(K^{-1}\) is the signing key and is kept private
- A signing algorithm \(\text{sig}\)
 - \(\text{sig}(K^{-1}, M)\) outputs a digital signature on \(M\)
- A verification algorithm \(\text{ver}\)
 - \(\text{ver}(K, M, \sigma)\) outputs yes or no
 - \(\text{ver}(K, M, \text{sig}(K^{-1}, M)) = \text{yes}\)
 - w/o knowing \(K^{-1}\), it is difficult to find \(\sigma\) s.t.
 \(\text{ver}(K, M, \sigma) = \text{yes}\)
Public-Key Certificates

- A certificate is a data record together with a digital signature.
- A certificate is signed using \(K^{-1} \)
 - we say that it is issued by a public key \(K \).
- A certificate binds some information to another public key (the subject key).
- Can be verified by anyone who knows the issuer’s public key.
 - can one trust the issuer’s public key?
Early Trust Management Languages

- **PolicyMaker**

- **KeyNote**

- **SPKI (Simple Public Key Infrastructure) / SDSI (Simple Distributed Security Framework)**
 - Clarke et al.: Certificate Chain Discovery in SPKI/SDSI, JCS’01.
Datalog-based Trust Management Languages

- Delegation Logic

- SD3 (Secure Dynamically Distributed Datalog)

- Binder

- RT: A Family of Role-based Trust-management Languages
Other Closely Related Logic-based Security Languages

- ABLP logic (Abadi, Burrows, Lampson, et al.)

- QCM (Query Certificate Managers)

- AF logic
History of SPKI/SDSI

- **SDSI (Simple Distributed Security Infrastructure)**
 - SDSI 1.0 and 1.1
 - Rivest & Lampson 96
- **SPKI (Simple Public Key Infrastructure)**
 - SPKI 1.0 (Ellison 1996)
- **SPKI/SDSI 2.0**
 - RFC 2693 [1999]
 - [Clarke et al. JCS’01]
An Example in SDSI 2.0

- SDSI Certificates
 - (KC access \Rightarrow KC mit faculty secretary)
 - (KC mit \Rightarrow KM)
 - (KM faculty \Rightarrow KEECS faculty)
 - (KEECS faculty \Rightarrow KRivest)
 - (KRivest secretary \Rightarrow KRivest alice)
 - (KRivest alice \Rightarrow KAlice)

- From the above certificates, KC concludes that KAlice has access
4-tuple Reduction in RFC 2693

- Name strings can be reduced using 4-tuples
 - \((K_1 A_1 \mapsto K_2)\) reduces “\(K_1 A_1 A_2 \ldots A_n\)” to “\(K_2 A_2 \ldots A_n\)”
 - e.g., \((K_C \text{ mit} \mapsto K_M)\) reduces “\(K_C \text{ mit faculty secretary}\)” to “\(K_M \text{ faculty secretary}\)”
 - \((K_1 A_1 \mapsto K_2 B_1 \ldots B_m)\)
 - reduces “\(K_1 A_1 A_2 \ldots A_n\)” to “\(K_2 B_1 \ldots B_m A_2 \ldots A_n\)”
 - e.g., \((K_M \text{ faculty} \mapsto K_{EECS} \text{ faculty})\) reduces “\(K_M \text{ faculty secretary}\)” to “\(K_{EECS} \text{ faculty secretary}\)”
Applying 4-tuple Reduction in the Example

- From \((K_C \text{ access})\)
 - to \((K_C \text{ mit faculty secretary})\)
 - to \((K_M \text{ faculty secretary})\)
 - to \((K_{EECS} \text{ faculty secretary})\)
 - to \((K_{Rivest} \text{ secretary})\)
 - to \((K_{Rivest} \text{ alice})\)
 - to \((K_{Alice})\)

\((K_C \text{ access} \Rightarrow K_C \text{ mit faculty secretary})\) \hspace{1cm} \(K_C \text{ mit} \Rightarrow K_M\)

\((K_M \text{ faculty} \Rightarrow K_{EECS} \text{ faculty})\) \hspace{1cm} \(K_{EECS} \text{ faculty} \Rightarrow K_{Rivest}\)

\((K_{Rivest} \text{ secretary} \Rightarrow K_{Rivest} \text{ alice})\) \hspace{1cm} \(K_{Rivest} \text{ alice} \Rightarrow K_{Alice}\)
Papers on Semantics for SPKI/SDSI

- Develop specialized modal logics
 - Abadi: “On SDSI's Linked Local Name Spaces”, CSFW’97, JCS’98.
 - Halpern & van der Meyden:
 - “A logic for SDSI's linked local name spaces”, CSFW’99, JCS’01
 - “A Logical Reconstruction of SPKI”, CSFW’01, JCS’03

- Other approaches
 - Li: “Local Names in SPKI/SDSI”, CSFW’00
 - Jha & Reps: “Analysis of SPKI/SDSI Certificates Using Model Checking”, CSFW’02
 - Li & Mitchell: “Understanding SPKI/SDSI Using First-Order Logic”, CSFW’03 (Contains the results presented here)
What is a Semantics?

- Elements of a semantics
 - syntax for statements
 - syntax for queries
 - an entailment relation that determines whether a query Q is true given a set P of statements
Why a Formal Semantics?

- What can we gain by a formal semantics
 - understand what queries can be answered
 - defines the entailment relation in a way that is precise, easy to understand, and easy to compute
- How can one say a semantics is good
 - subjective metrics:
 - simple, natural, close to original intention
 - defines answers to a broad class of queries
 - can use existing work to provide efficient deduction procedures for answering those queries
Concepts in SD SI

- Concepts
 - principals: K, K_1
 - identifiers: A, B, A_1
 - e.g., mit, faculty, alice
 - local names: $K A, K_1 A_1$
 - e.g., K_M faculty, K_{Rivest} alice
 - name strings: $K A_1 A_2 \ldots A_n$
 - ω, ω_1
 - e.g., K_C mit faculty secretary
4-tuple \((K, A, \omega, V)\)
- \(K\) is the issuer principal
- \(A\) is an identifier
- \(\omega\) is a name string
- \(V\) is the validity specification

We write \((K, A \Rightarrow \omega)\) for a 4-tuple
- ignoring validity specification
A Rewriting Semantics for SDSI

- Queries have the form “can ω_1 rewrite into ω_2?”
- Answer a query is not easy.
 - cannot naively search for all ways of rewriting ω_1, as there may be recursions
 - e.g., (K friend \Rightarrow K friend friend)
- What can we do?
Deduction Based on the Rewriting Semantics (1)

- Limit queries to the form “can ω_1 rewrite into K?”
 - In [Clarke et al.’01], the following closure mechanism is used
 - rewrite 4-tuples
 - e.g., apply $(K_C \text{ mit } \Leftrightarrow K_M)$
 - to rewrite $(K_C \text{ access } \Rightarrow K_C \text{ mit faculty secretary})$,
 - one gets $(K_C \text{ access } \Rightarrow K_M \text{ faculty secretary})$
 - compute the closure of a set of 4-tuples,
 - obtained by applying 4-tuples that rewrites to a principal
 - then use the resulting shortening 4-tuples to rewrite ω_1
 - Search is not goal-directed
Deduction Based on the Rewriting Semantics (2)

- Limit to queries like “can ω_1 rewrite into K?”
 - In [Li CSFW’00], the following XSB logic program is given

```prolog
:- table(contains/2).
contains([P0, N0 | T], P2) :-
    contains([P0, N0], P1),
    contains([P1 | T], P2).
contains([P0, N0], P) :-
    credential([P0, N0], CN2),
    contains(CN2, P).
contains([P], P, []) :- isPrincipal(P).
```
Deduction Based on the Rewriting Semantics (3)

- [Li, Winsborough & Mitchell, CCS’01, JCS’03]
 - develop a graph-based search algorithm for a language RT_0, a superset of SDSI
 - combines bottom-up search and goal-directed top-down search with tabling specifically for the kind of rules in RT_0
 - can deal with distributed discovery
Deduction Based on the Rewriting Semantics (4)

- Use techniques for model checking pushdown systems [Jha & Reps CSFW’02]
 - SDSI rewriting systems correspond to string rewriting systems modeled by pushdown systems
 - Algorithms for model checking pushdown systems can be used
 - Takes time $O(N^3)$, where N is the total size of the SDSI statements
Apply the rewriting rule: $K_1 A_1$ to $K_2 A_2 A_3$

A name string corresponds to a configuration

“rewrites into” equivalent to “reaches”
Recap of the Rewriting-based Semantics

- Defines answers to queries having the form “can ω_1 rewrite into ω_2?”
- Specialized algorithms (either developed for SDSI or for model checking pushdown systems) are needed
- Papers by Abadi and Halpern and van der Meyden try to come up with axiom systems for the rewriting semantics
Set-based Semantic Intuitions

- Each name string is bound to a set of principals
- \((K A \vDash \omega)\) means the local name “K A” is bound to a superset of the principal set that \(\omega\) is bound to
Defining Set-based Semantics (1)

- A valuation \mathcal{V} maps each local name to a set of principals.
- A valuation \mathcal{V} can be extended to map each name string to a set of principals:
 - $\mathcal{V}(K) = \{K\}$
 - $\mathcal{V}(KA) = \mathcal{V}(K) \cup \mathcal{V}(A)$
 - $\mathcal{V}(KB_1 \ldots B_m) = \bigcup_{j=1}^{n} \mathcal{V}(KB_2 \ldots B_m)$
 - where $m > 1$ and $\mathcal{V}(KB_1) = \{K_1, K_2, \ldots, K_n\}$
Defining Set-based Semantics (2)

- A 4-tuple \((K A \Rightarrow \omega)\) is the following constraint
 - \(V (K A) \supseteq V (\omega)\)

- The semantics of \(P\) is the least valuation \(V_P\) that satisfies all the constraints

- Queries
 - “can \(\omega\) rewrite into \(K\)” answered by checking whether “\(K \in V_P (\omega)\)”.

- Does not define answers to “can \(\omega_1\) rewrite into \(\omega_2\)”.
 - asking whether \(V_P (\omega_1) \supseteq V_P (\omega_2)\) is incorrect
Relationship Between the Rewriting Semantics and the Set Semantics

- **Theorem:** Given P, ω_1, and ω_2, ω_1 rewrites into ω_2 using P if and only if for any $P' \supseteq P$, $\mathcal{V}_{P'} (\omega_1) \supseteq \mathcal{V}_{P'} (\omega_2)$.

- **Corollary:** Given P, ω, and K, ω rewrites into K using P if and only if $\mathcal{V}_P (\omega) \supseteq \{ K \}$
A Logic-Programming-based Semantics Derived from the Set-based Semantics

- Translate each 4-tuple into a LP clause
 - Using a ternary predicate m
 - \(m(K, A, K') \) is true if \(K' \in V(K A) \)
 - \((K A \Rightarrow K')\) to \(m(K, A, K') \)
 - \((K A \Rightarrow K_1 A_1)\) to \(m(K, A, ?x) :- m(K_1, A_1, ?x) \)
 - \((K A \Rightarrow K_1 A_1 A_2)\)
 to \(m(K, A, ?x) :- m(K_1, A_1, ?y_1), m(?y_1, A_2, ?x) \)
 - \((K A \Rightarrow K_1 A_1 A_2 A_3)\)
 to \(m(K, A, ?x) :- m(K_1, A_1, ?y_1), m(?y_1, A_2, ?y_2), m(?y_2, A_3, ?x) \)
 - The minimal Herbrand model determines the semantics
An Alternative Way of Defining the LP-based Semantics (1)

- Define a macro `contains`
 - `contains[ω][K']` means that $K' \in V(ω)$
 - `contains[K][K']` \equiv $(K= K')$
 - `contains[K A][K']` \equiv $m(K, A, K')$
 - `contains[K A_1 A_2 \ldots A_n][K']` \equiv
 $\exists y (m(K, A_1, y) \land contains[y A_2 \ldots A_n][K'])$
 where $n>1$
An Alternative Way of Defining the LP-based Semantics (2)

- Translates a 4-tuple \((K A \Rightarrow \omega)\) into a FOL sentence
 - \(\forall z \ (\text{contains}[K A][z] \iff \text{contains}[\omega][z])\)
- This sentence is also a Datalog clause
- A set \(P\) of 4-tuples defines a Datalog program, denoted by \(SP[P]\)
 - The minimal Herbrand model of \(SP[P]\) defines the semantics
An Example of Translation

From \((K_C \text{ access } \Rightarrow K_C \text{ mit faculty secretary})\)

to \(\forall z \ (\text{contains}[K_C \text{ access}][z] \iff \text{contains}[K_C \text{ mit faculty secretary}][z])\)

to \(\forall z \ (m(K_C, \text{ access}, z) \iff \exists y_1 (m(K_C, \text{ mit}, y_1) \land \text{contains}[y_1 \text{ faculty secretary}][z])\)

to \(\forall z \forall y_1 (m(K_C, \text{ access}, z) \iff m(K_C, \text{ mit}, y_1) \land \exists y_2 (m(y_1, \text{ faculty}, y_2) \land \text{contains}[y_2 \text{ secretary}][z])\)

to \(\forall z \forall y_1 \forall y_2 (m(K_C, \text{ access}, z) \iff m(K_C, \text{ mit}, y_1) \land m(y_1, \text{ faculty}, y_2) \land m(y_2, \text{ secretary}, z))\)
Set semantics is equivalent to LP semantics

- The least Herbrand model of SP[P] is equivalent to the least valuation, i.e.,
 - $K' \in V_p (K A) \iff m(K,A,K')$ is in the least Herbrand model of SP[P]

- Same limitation as set-based semantics
 - does not define answers to containment between arbitrary name strings
A First-Order Logic (FOL) Semantics

- A set P of 4-tuples defines a FOL theory, denoted by $\text{Th}[P]$
- A query is a FOL formula
 - “ω_1 rewrites into ω_2” is translated into $\forall z \ (\text{contains}[\omega_1][z] \iff \text{contains}[\omega_2][z])$
- Other FOL formulas can also be used as queries
- Logical implication determines semantics
FOL Semantics is Extension of LP Semantics

- LP semantics is FOL semantics with queries limited to LP queries
 - $m(K, A, K')$ is in the least Herbrand model of $SP[P]$ if and only if $Th[P] \models m(K, A, K')$
Equivalence of Rewriting Semantics and FOL Semantics

- Theorem: for string rewriting queries, the string rewriting semantics is equivalent to the FOL semantics
 - Given a set P of 4-tuples, it is possible to rewrite \(\omega_1 \) into \(\omega_2 \) using the 4-tuples in P if and only if
 \[
 \text{Th}[P] \models \forall z \ (\text{contains}[\omega_1][z] \iff \text{contains}[\omega_2][z])
 \]
Advantages of FOL semantics: Computation efficiency

- A large class of queries can be answered efficiently using logic programs
 - including rewriting queries
 - e.g., whether ω rewrites into $K B_1 B_2$ under P can be answered by determining whether $SP[P \cup (K' A' \models \omega) \cup (K B_1 \models K_1) \cup (K_1 B_2 \models K_2)] \models m(K', A', K_2)$
 - where K', K_1, and K_2 are new principals
 - this proof procedure is sound and complete
 - this result also follows from results in proof theory regarding Harrop Hereditary formulas
Advantages of FOL semantics: Extensibility

- Additional kinds of queries can be formulated and answered, e.g.,
 \[\forall z \ (m(K_1, A_1, z) \iff m(K_1, A_2, z)) \iff \exists z \ (m(K_2, A_1, z) \land m(K_2, A_2, z)) \]

- Additional forms of statements can be easily handled, e.g.,
 \[(K A \Rightarrow K_1 A_1 \cap K_2 A_2) \text{ maps to } \forall z \ (m(K,A,z) \iff m(K_1,A_1,z) \land m(K_2,A_2,z)) \]
Summary: 4 Semantics

String Rewriting: difficult to extend

Set: limited in queries

First-Order Logic

Logic Programming
Advantages of FOL Semantics: Summary

- Simple
 - captures the set-based intuition
 - defined using standard FOL

- Extensible
 - additional policy language features can be handled easily
 - allow more meaningful queries

- Computation efficiency