
Ninghui Li (Purdue University)

Logic and Logic Programming
in Distributed Access Control
(Part One)

Ninghui Li
Department of Computer Science

and CERIAS
Purdue University

Ninghui Li (Purdue University) 2

Outline

n A brief introduction to trust management
n Logic-based semantics for SDSI

Ninghui Li (Purdue University) 3

The Trust-Management (TM) Approach

n Multi-centric access control using delegation
q access control decisions are based on

distributed policy statements issued by multiple
principals

q policy statements contain
n attributes of principals such as permissions, roles,

qualifications, characteristics
n trust relationships

Ninghui Li (Purdue University) 4

Common characteristics of TM systems

n Use public-key certificates for non-local
statements

n Treat public keys as principals to be authorized
q authentication consists of verifying signatures

Ninghui Li (Purdue University) 5

Digital Signature Scheme

n Key space: a set of key pairs (K, K-1)
q K is the verification key and is publicly available
q K-1 is the signing key and is kept private

n A signing algorithm sig
q sig(K-1, M) outputs a digital signature on M

n A verification algorithm ver
q ver(K, M, σ) outputs yes or no
q ver(K, M, sig(K-1, M)) = yes
q w/o knowing K-1, it is difficult to find σ s.t.

ver(K,M,σ)=yes

Ninghui Li (Purdue University) 6

Public-Key Certificates

n A certificate is a data record together with a
digital signature

n A certificate is signed using K-1

q we say that it is issued by a public key K
n A certificate binds some information to another

public key (the subject key)
n Can be verified by anyone who knows the

issuer’s public key
q can one trust the issuer’s public key?

Ninghui Li (Purdue University) 7

Early Trust Management Langugaes

n PolicyMaker
q Blaze, Feigenbaum & Lacy: “Decentralized Trust Management”,

S&P’96.
q Blaze, Feigenbaum & Strauss: “Compliance-Checking in the

PolicyMaker Trust Management System”, FC’98.
n KeyNote

q Blaze, Feigenbaum, Ioannidis & Keromytis: “The KeyNote Trust-
Management System, Version 2”, RFC 2714.

n SPKI (Simple Public Key Infrastructure) / SDSI (Simple
Distributed Security Framework)
q Rivest & Lampson: SDSI A Simple Distributed Security

Infrastructure, Web-page 1996.
q Ellison et al.: SPKI Certificate Theory, RFC 2693.
q Clarke et al.: Certificate Chain Discovery in SPKI/SDSI, JCS’01.

Ninghui Li (Purdue University) 8

Datalog-based Trust Management
Languages
n Delegation Logic

q Li, Grosof & Feigenbaum: “Delegation Logic: A Logic-based
Approach to Distributed Authorization”, TISSEC’03. (Conference
versions appeared in CSFW’99 and S&P’00)

n SD3 (Secure Dynamically Distributed Datalog)
q Jim: “SD3: A Trust Management System with Certified

Evaluation”, S&P’01.

n Binder
q DeTreville: “Binder, a Logic-Based Security Language”, S&P’02.

n RT: A Family of Role-based Trust-management Languages

Ninghui Li (Purdue University) 9

Other Closely Related Logic-based
Security Languages
n ABLP logic (Abadi, Burrows, Lampson, et al.)

q Lampson et al.: “Authentication in Distributed Systems: Theory
and Practice”, TOCS’92.

q Abadi et al.: “A Calculus for Access Control in Distributed
Systems”, TOPLAS’93.

n QCM (Query Certificate Managers)
q Gunter & Jim: “Policy-directed Certificate Retrieval”, SPE’00

n AF logic
q Appel & Felton: “Proof-Carrying Authentication”, CCS’99

Ninghui Li (Purdue University) 10

History of SPKI/SDSI

n SDSI (Simple Distributed Security Infrastructure)
q SDSI 1.0 and 1.1
q Rivest & Lampson 96

n SPKI (Simple Public Key Infrastructure)
q SPKI 1.0 (Ellison 1996)

n SPKI/SDSI 2.0
q RFC 2693 [1999]
q [Clarke et al. JCS’01]

Ninghui Li (Purdue University) 11

An Example in SDSI 2.0

n SDSI Certificates
q (KC access a KC mit faculty secretary)
q (KC mit a KM)
q (KM faculty a KEECS faculty)
q (KEECS faculty a KRivest)
q (KRivest secretary a KRivest alice)
q (KRivest alicea KAlice)

n From the above certificates, KC concludes that
KAlice has access

Ninghui Li (Purdue University) 12

4-tuple Reduction in RFC 2693

n Name strings can be reduced using 4-tuples
q (K1 A1 a K2) reduces “K1 A1 A2 … An”

to “K2 A2 … An”
n e.g., (KC mit a KM) reduces “KC mit faculty

secretary”to “KM faculty secretary”

q (K1 A1 a K2 B1 … Bm)
reduces “K1 A1 A2 … An”
to “K2 B1 … Bm A2 … An”

n e.g., (KM faculty a KEECS faculty) reduces “KM
faculty secretary”to “KEECS faculty secretary”

Ninghui Li (Purdue University) 13

Applying 4-tuple Reduction in the
Example
n From (KC access)

to (KC mit faculty secretary)
to (KM faculty secretary)
to (KEECS faculty secretary)
to (KRivest secretary)
to (KRivest alice)
to (KAlice)

(KC access a KC mit faculty secretary) (KC mita KM)
(KM faculty a KEECS faculty) (KEECS faculty a KRivest)
(KRivest secretary a KRivest alice) (KRivest alicea KAlice)

Ninghui Li (Purdue University) 14

Papers on Semantics for SPKI/SDSI

n Develop specialized modal logics
q Abadi: “On SDSI's Linked Local Name Spaces”, CSFW’97,

JCS’98.
q Halpern & van der Meyden:

n “A logic for SDSI's linked local name spaces”, CSFW’99,
JCS’01

n “A Logical Reconstruction of SPKI”, CSFW’01, JCS’03
q Howell & Kotz: “A Formal Semantics for SPKI”, ESORICS’00

n Other approaches
q Li: “Local Names in SPKI/SDSI”, CSFW’00
q Jha & Reps: “Analysis of SPKI/SDSI Certificates Using Model

Checking”, CSFW’02
q Li & Mitchell: “Understanding SPKI/SDSI Using First-Order Logic”,

CSFW’03 (Contains the results presented here)

Ninghui Li (Purdue University) 15

What is a Semantics?

n Elements of a semantics
q syntax for statements
q syntax for queries
q an entailment relation that determines whether a

query Q is true given a set P of statements

Ninghui Li (Purdue University) 16

Why a Formal Semantics?

n What can we gain by a formal semantics
q understand what queries can be answered
q defines the entailment relation in a way that is

precise, easy to understand, and easy to compute
n How can one say a semantics is good
q subjective metrics:
n simple, natural, close to original intention

q defines answers to a broad class of queries
q can use existing work to provide efficient

deduction procedures for answering those queries

Ninghui Li (Purdue University) 17

Concepts in SDSI

n Concepts
q principals K, K1

q identifiers A, B, A1
e.g., mit, faculty, alice

q local names K A, K1 A1
e.g., KM faculty, KRivest alice

q name strings K A1 A2 … An
ω, ω1
e.g., KC mit faculty secretary

Ninghui Li (Purdue University) 18

Statements in SDSI

n 4-tuple (K, A, ω, V)
q K is the issuer principal
q A is an identifier
q ω is a name string
q V is the validity specification

n We write (K A a ω) for a 4-tuple
q ignoring validity specification

Ninghui Li (Purdue University) 19

A Rewriting Semantics for SDSI

n A set P of 4-tuples defines a set of rewriting
rules, denoted by RS[P]

n Queries have the form “can ω1 rewrite into ω2?”
n Answer a query is not easy.

q cannot naively search for all ways of rewriting ω1,
as there may be recursions
n e.g., (K friend a K friend friend)

n What can we do?

Ninghui Li (Purdue University) 20

Deduction Based on the Rewriting
Semantics (1)
n Limit queries to the form “can ω1 rewrite into K?”
q In [Clarke et al.’01], the following closure mechanism

is used
n rewrite 4-tuples
q e.g., apply (KC mita KM)

to rewrite (KC access a KC mit faculty secretary),
one gets (KC access a KM faculty secretary)

n compute the closure of a set of 4-tuples,
q obtained by applying 4-tuples that rewrites to a principal

n then use the resulting shortening 4-tuples to rewrite ω1

q Search is not goal-directed

Ninghui Li (Purdue University) 21

Deduction Based on the Rewriting
Semantics (2)
n Limit to queries like “can ω1 rewrite into K?”
q In [Li CSFW’00], the following XSB logic program

is given
:- table(contains/2).
contains([P0, N0 | T], P2) :-

contains([P0, N0], P1),
contains([P1 | T], P2).

contains([P0, N0], P) :-
credential([P0, N0], CN2),
contains(CN2, P).

contains([P], P, []) :- isPrincipal(P).

Ninghui Li (Purdue University) 22

Deduction Based on the Rewriting
Semantics (3)
n [Li, Winsborough & Mitchell, CCS’01, JCS’03]
q develop a graph-based search algorithm for a

language RT0, a superset of SDSI
n combines bottom-up search and goal-directed top-

down search with tabling specifically for the kind of
rules in RT0

n can deal with distributed discovery

Ninghui Li (Purdue University) 23

Deduction Based on the Rewriting
Semantics (4)
n Use techniques for model checking pushdown

systems [Jha & Reps CSFW’02]
q SDSI rewriting systems correspond to string

rewriting systems modeled by pushdown systems
q algorithms for model checking pushdown systems

can be used
n takes time O(N^3), where N is the total size of the

SDSI statements

Ninghui Li (Purdue University) 24

SDSI and Pushdown Systems

A1

Stack:

State: K1

B1

B2

...

Apply the rewriting rule:
K1 A1 to K2 A2 A3

A3

Stack:

State: K2

B1

B2

...

A2

A name string corresponds to a configuration

“rewrites into” equivalent to “reaches”

Ninghui Li (Purdue University) 25

Recap of the Rewriting-based Semantics

n Defines answers to queries having the form “can
ω1 rewrite into ω2?”

n Specialized algorithms (either developed for
SDSI or for model checking pushdown systems)
are needed

n Papers by Abadi and Halpern and van der
Meyden try to come up with axiom systems for
the rewriting semantics

Ninghui Li (Purdue University) 26

Set-based Semantic Intuitions

n Each name string is bound to a set of
principals

n (K A a ω) means the local name “K A”is
bound to a superset of the principal set that ω
is bound to

Ninghui Li (Purdue University) 27

Defining Set-based Semantics (1)

n A valuation V maps each local name to a set of
principals

n A valuation V can be extended to map each
name string to a set of principals
q V (K) = { K }
q V (K A) = V (K A)

q V (K B1 … Bm) = ∪ V (Kj B2… Bm)
j = 1..n

n where m>1 and V (K B1) = {K1, K2, … , Kn}

Ninghui Li (Purdue University) 28

Defining Set-based Semantics (2)

n A 4-tuple (K A a ω) is the following constraint
q V (K A) ⊇ V (ω)

n The semantics of P is the least valuation VP that
satisfies all the constraints

n Queries
q “can ω rewrite into K?”answered by checking

whether “K ∈ VP (ω)”.
n Does not define answers to “can ω1 rewrite into

ω2”.
q asking whether VP (ω1) ⊇ VP (ω2) is incorrect

Ninghui Li (Purdue University) 29

Relationship Between the Rewriting
Semantics and the Set Semantics
n Theorem: Given P, ω1, and ω2, ω1 rewrites into

ω2 using P if and only if for any P’⊇ P, VP’(ω1) ⊇
VP’(ω2).

n Corrolary: Given P, ω, and K, ω rewrites into K
using P if and only if VP (ω) ⊇ { K }

Ninghui Li (Purdue University) 30

A Logic-Programming-based Semantics
Derived from the Set-based Semantics
n Translate each 4-tuple into a LP clause
q Using a ternary predicate m
n m(K, A, K’) is true if K’∈ V (K A)

q (K A a K’) to m(K, A, K’)
q (K A a K1 A1) to m(K, A, ?x) :- m(K1, A1, ?x)
q (K A a K1 A1 A2)

to m(K,A,?x) :- m(K1,A1,?y1), m(?y1,A2,?x)
q (K A a K1 A1 A2 A3)

to m(K,A,?x) :- m(K1,A1,?y1), m(?y1,A2,?y2), m(?y2,A3,?x)

n The minimal Herbrand model determines the semantics

Ninghui Li (Purdue University) 31

An Alternative Way of Defining the LP-
based Semantics (1)

n Define a macro contains
q contains[ω][K’] means that K’∈V (ω)

n contains[K][K’] ≡ (K= K’)
n contains[K A][K’] ≡ m(K, A, K’)
n contains[K A1 A2 … An][K’] ≡

∃y (m(K, A1, y) ∧ contains[y A2 … An][K’])
where n>1

Ninghui Li (Purdue University) 32

An Alternative Way of Defining the LP-
based Semantics (2)
n Translates a 4-tuple (K A a ω) into a FOL

sentence
q ∀z (contains[K A][z] ⇐ contains[ω][z])

n This sentence is also a Datalog clause
n A set P of 4-tuples defines a Datalog program,

denoted by SP[P]
q The minimal Herbrand model of SP[P] defines

the semantics

Ninghui Li (Purdue University) 33

An Example of Translation

From (KC access a KC mit faculty secretary)
to ∀z (contains[KC access][z] ⇐

contains[KC mit faculty secretary][z])
to ∀z (m(KC, access, z) ⇐

∃y1 (m(KC, mit, y1) ∧ contains[y1 faculty secretary][z])
to ∀z ∀y1 (m(KC, access, z) ⇐

m(KC, mit, y1) ∧
∃y2 (m(y1, faculty, y2) ∧ contains[y2 secretary] [z])

to ∀z ∀y1 ∀y2 (m(KC, access, z) ⇐
m(KC, mit, y1) ∧
m(y1, faculty, y2) ∧
m(y2, secretary, z]))

Ninghui Li (Purdue University) 34

Set semantics is equivalent to LP
semantics
n The least Herbrand model of SP[P] is equivalent

to the least valuation, i.e.,
q K’∈ VP (K A) iff. m(K,A,K’) is in the least

Herbrand model of SP[P]
n Same limitation as set-based semantics

q does not define answers to containment between
arbitrary name strings

Ninghui Li (Purdue University) 35

A First-Order Logic (FOL) Semantics

n A set P of 4-tuples defines a FOL theory,
denoted by Th[P]

n A query is a FOL formula
q “ω1 rewrites into ω2”is translated into

∀z (contains[ω1][z] ⇐ contains[ω2][z])
q Other FOL formulas can also be used as queries

n Logical implication determines semantics

Ninghui Li (Purdue University) 36

FOL Semantics is Extension of LP
Semantics
n LP semantics is FOL semantics with queries

limited to LP queries
q m(K,A,K’) is in the least Herbrand model of SP[P]

iff. Th[P] |= m(K,A,K’)

Ninghui Li (Purdue University) 37

Equivalence of Rewriting Semantics and
FOL Semantics
n Theorem: for string rewriting queries, the string

rewriting semantics is equivalent to the FOL
semantics
q Given a set P of 4-tuples, it is possible to rewrite

ω1 into ω2 using the 4-tuples in P if and only if
Th[P] |= ∀z (contains[ω1][z] ⇐

contains[ω2][z])

Ninghui Li (Purdue University) 38

Advantages of FOL semantics:
Computation efficiency
n A large class of queries can be answered

efficiently using logic programs
q including rewriting queries
q e.g., whether ω rewrites into K B1 B2 under P can

be answered by determining whether SP[P∪(K’
A’_ω)∪(K B1_K’1)∪(K’1 B2 _K’2)] |= m(K’,A’, K’2)
n where K’, K’1, and K’2 are new principals
n this proof procedure is sound and complete

q this result also follows from results in proof theory
regarding Harrop Hereditary formulas

Ninghui Li (Purdue University) 39

Advantages of FOL semantics:
Extensibility
n Additional kinds of queries can be formulated

and answered, e.g.,
q ∀z (m(K1, A1, z) ⇐ m(K1, A2, z))

⇐ ∃z (m(K2, A1, z) ∧ m(K2, A2, z))

n Additional forms of statements can be easily
handled, e.g.,
q (K A a K1 A1 ∩ K2 A2) maps to

∀z (m(K,A,z) ⇐ m(K1,A1,z) ∧ m(K2,A2,z))

Ninghui Li (Purdue University) 40

Summary: 4 Semantics

String Rewriting:
difficult to extend

Set:
limited in queries

Logic
Programming

First-Order
Logic

Ninghui Li (Purdue University) 41

Advantages of FOL Semantics:
Summary
n Simple

q captures the set-based intuition
q defined using standard FOL

n Extensible
q additional policy language features can be

handled easily
q allow more meaningful queries

n Computation efficiency

