590N: Logical Methods in Information Security Lecture 9

Ninghui Li

February 4, 2008

Ninghui Li: 590N: Logical Methods in Information Security Lecture 9,

Propositional Logic: Semantics and Normal Forms

The Propositional SAT Problem

Ξ.

・ヨト ・ヨト

< 一 →

Semantic Equivalence

Definition (Semantic entailment)

If, for all valuations in which all $\phi_1, \phi_2, \cdots, \phi_n$ evaluates to T, ψ also evaluates to T, we say that

$$\phi_1, \phi_2, \cdots, \phi_n \models \psi$$

holds and call \models the *semantic entailment* relation.

A B M A B M

Semantic Equivalence

Definition (Semantic entailment)

If, for all valuations in which all $\phi_1, \phi_2, \cdots, \phi_n$ evaluates to T, ψ also evaluates to T, we say that

$$\phi_1, \phi_2, \cdots, \phi_n \models \psi$$

holds and call \models the *semantic entailment* relation.

Definition (Semantic equivalence)

Two propositional logical formulas ϕ and ψ are *semantically* equivalent iff. $\phi \models \psi$ and $\psi \models \phi$. In that case we write, $\phi \equiv \psi$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Validity and Satisfiability

Definition (Validity)

We say a formula ϕ is valid iff $\models \phi$ holds.

Definition (Satisfiability)

We say a formula ϕ is satisfiable iff there exists a valuation in which it evaluates to T.

Proposition

A formula ϕ is satisfiable iff $\neg \phi$ is not valid.

э.

(*) *) *) *)

Conjunctive Normal Forms

- atom: proposition, e.g., p, q
- **Iteral**: atom or the negation of an atom, e.g., $p, \neg p$
- clause: disjunction of literals

Definition

A formula is in Conjunctive Normal Form (CNF) if it is a conjunction of clauses.

Example

$$(\neg q \lor p \lor r) \land (\neg p \lor r \lor \neg r) \land q$$

Every formula can be transformed into an *equivalent* formula in CNF.

э.

・ 戸 ト ・ ヨ ト ・ ヨ ト

Transforming formulas into CNF

- ▶ IMPL_FREE: remove all implications by replacing $\phi \rightarrow \eta$ with $\neg \phi \lor \eta$.
- NNF: transform formula into negation normal form (NNF), i.e., negation occur only in front of atoms by
 - applying De-Morgan law $\neg(\phi \lor \eta) \equiv \neg\phi \land \neg\eta$ and $\neg(\phi \land \eta) \equiv \neg\phi \lor \neg\eta$
 - removing double negations $\neg \neg \phi \equiv \phi$.
- DISTR: push all occurrences of ∨ inside ∧ by applying the distributive law (φ₁ ∧ φ₂) ∨ φ₃ ≡ (φ₁ ∨ φ₃) ∧ (φ₁ ∨ φ₃).

Satisfiability and Validity of Formulas in CNF

- Satisfiability in CNF is NP-Complete.
 - For 3-SAT, monotone 3-SAT, and monotone 3-2-SAT
 - 2-SAT can be solved in polynomial time.

ъ

・ 同 ト ・ ヨ ト ・ ヨ ト

Satisfiability and Validity of Formulas in CNF

- Satisfiability in CNF is NP-Complete.
 - For 3-SAT, monotone 3-SAT, and monotone 3-2-SAT
 - 2-SAT can be solved in polynomial time.
- Validity in CNF can be solved in linear time.
 - $\phi = c_1 \wedge c_2 \wedge \cdots \wedge c_n$ is valid iff each c_i is valid.
 - $L_1 \vee L_2 \vee \cdots \vee L_m$ is valid iff there exist i, j such that L_i is $\neg L_j$.

・ロト ・ 一 マ ト ・ 日 ト ・ 日 ト

Disjunctive Normal Forms

Definition

A formula is in Disjunctive Normal Form (DNF) if it is a disjunction of conjunctions.

Example

$$(\neg q \land p \land r) \lor (\neg p \land r \land \neg r) \lor q$$

- Every formula can be transformed into an *equivalent* formula in DNF.
- Checking satisfiability of formulas in DNF can be solved in linear time.
- ► Validity of formulas in DNF is co-NP complete.

э.

(4) E > (4) E >

The SAT Problem

- NP-complete, worst-case exponential time, however, large instances can be solved in practice.
- SAT solvers widely used in verification.
- Hardness of purely randomly generated SAT instances depends primarily upon the ratio of # clauses to # variables.
 - Ration too large, easily unsatisfiable (too constrained).
 - Ratio too small, easily satisfiable (many solutions).
 - For random 3SAT, ratio \approx 4.2 hardest in an early study. Later study shows dependence on SAT solvers.

- 4 伊 ト 4 ヨ ト 4 ヨ ト

Algorithms for SAT

- Modern variants of the DPLL (Davis-Putnam-Logemann-Loveland) algorithm.
 - complete, backtracking,
- Stochastic local search algorithms, e.g., WALKSAT.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

DPLL

- Basic Backtracking: Choose a literal, assign a truth value to it, simplify the formula, and then recursively checking if the simplified formula is satisfiable;
 - if so, the original formula is satisfiable;
 - otherwise, assume the opposite truth value, redo simplification and recursive check. This is known as the splitting rule.

DPLL

- Basic Backtracking: Choose a literal, assign a truth value to it, simplify the formula, and then recursively checking if the simplified formula is satisfiable;
 - if so, the original formula is satisfiable;
 - otherwise, assume the opposite truth value, redo simplification and recursive check. This is known as the splitting rule.
- ► **The simplification step**: removes all clauses which become true, and all literals that become false.

・ 同 ト ・ ヨ ト ・ ヨ ト

DPLL

- Basic Backtracking: Choose a literal, assign a truth value to it, simplify the formula, and then recursively checking if the simplified formula is satisfiable;
 - if so, the original formula is satisfiable;
 - otherwise, assume the opposite truth value, redo simplification and recursive check. This is known as the splitting rule.
- ► The simplification step: removes all clauses which become true, and all literals that become false.
- Optimizations
 - Unit propagation: If a clause is a unit clause, the truth value of the literal is determined. In practice, this often leads to deterministic cascades of units, thus avoiding a large part of the naive search space.
 - **Pure literal elimination**: If all occurrences of a propositional variable are positive (or negative), it is called pure. Not very useful due to cost of detecting.

《曰》 《聞》 《臣》 《臣》 三臣