Homework #5

Due date & time: 10:30am on April 5, 2012. Hand in at the beginning of class (preferred), or email to the TA (jiang97@purdue.edu) by the due time.

Late Policy: You have three extra days in total for all your homeworks. Any portion of a day used counts as one day; that is, you have to use integer number of late days each time. If you emailed your homework to the TA by 10:30am the day after it was due, then you have used one extra day. If you exhaust your three late days, any late homework won’t be graded.

Additional Instructions: The submitted homework must be typed. Using Latex is recommended, but not required.

Problem 1 (10 pts) (a) Describe the NMAC construction and the HMAC construction. (b) Explain in your own words why NMAC offers secure MAC. (c) In what aspect does HMAC differ from NMAC?

Problem 2 (8 pts) (Katz and Lindell. Page 158. Exercise 4.17.)

Problem 3 (8 pts) (a) Give a CPA-secure encryption scheme and a secure MAC scheme such that when using them to instantiate the Encryption and Authenticate construction, the resulting construction is secure. (b) Give a CPA-secure encryption scheme and a secure MAC scheme such that when using them to instantiate the Encryption and Authenticate construction, the resulting construction is insecure.

Problem 4 (8 pts) Repeat the previous problem for the Authenticate-then-Encrypt construction.

Problem 5 (8 pts) (Katz and Lindell. Page 237. Exercise 6.2.) Hint. Given a one-way function g, you need to construct a function f such that $\forall n f(0^n) = 0^n$ and prove that f is one-way.

Problem 6 (8 pts) (Katz and Lindell. Page 238. Exercise 6.4.)

Problem 7 (10 pts) (Katz and Lindell. Page 296. Exercise 7.21.)

Problem 8 (5 pts) (Katz and Lindell. Page 295. Exercise 7.15.) Hint. Show that if there exists an algorithm that can solve DLG, then there exists an algorithm that can solve CDH.

Problem 9 (5 pts) (Katz and Lindell. Page 295. Exercise 7.16.)

Problem 10 (10 pts) (Katz and Lindell. Page 295. Exercise 7.18.) Hint. The problem given in 7.18 is not hard. Find an algorithm to compute $g^{1/x} \mod p$.
Problem 11 (10 pts) (Katz and Lindell. Page 231. Exercise 9.2.)

Problem 12 (10 pts) (Katz and Lindell. Page 231. Exercise 9.3.)