
CS555: Cryptography Spring 2012

Homework #4

Due date & time: 10:30am on March 22, 2012. Hand in at the beginning of class (preferred), or email to
the TA (jiang97@purdue.edu) by the due time.

Late Policy: You have three extra days in total for all your homeworks. Any portion of a day used counts
as one day; that is, you have to use integer number of late days each time. If you emailed your homework
to the TA by 10:30am the day after it was due, then you have used one extra day. If you exhaust your three
late days, any late homework won’t be graded.

Additional Instructions: The submitted homework must be typed. Using Latex is recommended, but not
required.

Problem 1 (6 pts) Let (G, ·) be a finite group, and g ∈ G. Show that ⟨g⟩ is a subgroup of G. Here ⟨g⟩
denote the set {g, g2, g3, · · · }.

Problem 2 (6 pts) Prove that if a finite group of order t has at least one generator g, i.e., the group can
be written as {g, g2, · · · , gt}, then the group has exactly ϕ(t) generators, where ϕ is Euler’s totient
function.

Hint: Prove that gj is a generator if and only if gcd(j, t) = 1.

Problem 3 (6 pts) Find all sub-groups of the group (Z15,+). Find all sub-groups of the group (Z∗
15,×).

Hint: A sub-group must have the closure property. Thus if a subgroup contains an element g, it
must contain ⟨g⟩.

Problem 4 (6 pts) (Katz and Lindell. Page 294. Exercise 7.10.)

Hint. The Chinese Remainder Theorem says that if x ≡ c(mod p) and x ≡ y(mod q), then
x ≡ y(mod pq). The result proven in Exercise 7.8 may also be helpful.

Problem 5 (6 pts) (Katz and Lindell. Page 295. Exercise 7.13.)

Problem 6 (10 pts) Merkle hash trees.

Merkle suggested a parallelizable method for constructing hash functions out of compression func-
tions. Let f be a compression function that takes two 512 bit blocks and outputs one 512 bit block.
To hash a message x one uses the following tree construction. The message is first divided into N
blocks, then starting from the beginning, apply f to every pair of adjacent blocks, resulting in ⌈N/2⌉
blocks. Repeat until one gets one block a, then apply f to a||msg-len and get the hash value.

For example, suppose the message has 3100 bits; it thus has 7 blocks, with the last block padded
with 484 0’s. Let the 7 blocks be x0, x1, · · · , x6. One first compute c0 = f(x0, x1), c1 = f(x2, x3),
c2 = f(x4, x5), c3 = x6. One then compute b0 = f(c0, c1), b1 = f(c2, c3). One then compute
a0 = f(b0, b1). The hash value of the message x is f(a0,msg-len), where msg-len is the binary
representation of 3100, padded with 0’s.



Prove that if one can find a collision for the resulting hash function then one can find collisions for the
compression function.

Hint: The proof is similar to that of the Merkle-Damgard construction.

Problem 7 (15 pts) Constructing hash functions from block ciphers.

Consider the Davies and Price construction of a hash function from a block cipher E . A message x is
divided into fixed-size blocks x1, x2, · · · , xk.

H0 = Initial Vector
Hi = Exi [Hi−1]⊕Hi−1 for 1 ≤ i ≤ k

Hk is the hash value.

We use hy(x) to denote the hash value of message x when using y as the initial vector. For example,
given two message blocks x1, x2, then

hy(x1) = Ex1 [y]⊕ y
hy(x1||x2) = hhy(x1)(x2) = Ex2 [hy(x1)]⊕ hy(x1).

In this problem, we assume that AES with 128 bit keys is used as E . Therefore, each message block
has 128 bits and the initial vector and the hash value have 128 bits.

a. (5 pts) Describe an algorithm that runs in time O(2128 and can generates an initial vector y and an
infinite sequence of messages x1, x2, x3, · · · such that hy(x1) = hy(x

2) = hy(x
3) = · · · .

Hint: find a message block x1 and a block y such that hy(x1) = y.

b. (10 pts) Describe a variation of the above attack with expected running time O(264) to attack the
hash function when the initial vector value is fixed to a value y0. The attack algorithm, when
given y0, finds an infinite sequence of messages x1, x2, x3, · · · such that hy0(x

1) = hy0(x
2) =

hy0(x
3) = · · · .

Hint: find two message blocks x1 and x2 and a block y such that hy0(x1) = y = hy(x2).

Problem 8 (15 pts) (Katz and Lindell. Page 155. Exercise 4.4.)

Problem 9 (10 pts) (Katz and Lindell. Page 155. Exercise 4.6.) Here we are asking whether when Con-
struction 4.3 is still a secure fixed-length MAC when one uses a weak PRF. If your answer is yes, give
a proof sketch. If your answer is no, give a counter example; that is, you give a weak PRF, and then
given an algorithm that can perform forgery.

Problem 10 (10 pts) (Katz and Lindell. Page 155. Exercise 4.9.)

Problem 11 (10 pts) (Katz and Lindell. Page 157. Exercise 4.12.) If your answer is yes, prove it. If your
answer is no, give a counter example.
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