# Cryptography CS 555



#### Topic 25: Quantum Crpytography

#### **Outline and Readings**

- Outline:
  - What is Identity Based Encryption
  - Quantum cryptography
- Readings:



### Identity Based Encryption

- Idea: Allow an arbitrary string (e.g., an email address) to be used as a public key
- Benefit: Easy to obtain authentic public key.
- Catch: Needs a Trusted Third Party (TTP).
- TTP publishes public parameters, and has master secret.
- A user can register with the TTP to obtain private key corresponding to an identity string.
- A sender can encrypt a message with public parameter and receiver's identity string.
- Exist constructions using parings (elliptic curves).
- TTP generates everyone's private key, and can decrypt anything.

### Quantum Cryptography

- based on a survey by Hoi-Kwong Lo.
  <u>http://www.hpl.hp.com/techreports/97/HPL-97-</u>
  <u>151.html</u>
- And on

http://en.wikipedia.org/wiki/Quantum\_key\_distribution

#### Quantum Mechanics & Cryptography

- Quantum communication
  - Protect communication using principles of physics
- Quantum computing
  - Can efficiently solve some problems that are computationally infeasible for traditional computers to solve
    - e.g., Shor's efficient algorithm for factoring
  - Exploits quantum superposition and entanglement
    - N bits in classical computers can only be in one of 2<sup>N</sup> states
    - N qubits can be in an arbitrary superposition of up to 2<sup>N</sup> different states simultaneously
      - When measured, it collapse into one state with some probability
    - Quantum computers can compute with all states simultaneously

### Properties of Quantum Information

- Wave function collapse
  - A superposition when measured by an observer, collapse to a specific state
  - Measurement of a signal changes it
- A quantum state is described as a vector
  - e.g., a photon has a quantum state,
  - quantum cryptography often uses photons in 1 of 4 polarizations (in degrees): 0, 45, 90, 135

Encoding 0 and 1 under two basis

| Basis           | 0          | 1             |
|-----------------|------------|---------------|
| + (rectilinear) | $\uparrow$ | $\rightarrow$ |
| × (diagonal)    | 7          | Ы             |

### Properties of Quantum Information

- No way to distinguish which of  $\neg \uparrow \rightarrow \lor$  a photon is
- Quantum "no-cloning" theorem: an unknown quantum state cannot be cloned.
- Measurement generally disturbs a quantum state
  - one can set up a rectilinear measurement or a diagonal measurement
    - a rectilinear measurement disturbs the states of those diagonal photons having 45/135
- Effect of measuring

| Basis | $\uparrow$ | $\rightarrow$ | 7                           | L<br>الا                    |
|-------|------------|---------------|-----------------------------|-----------------------------|
| +     | $\uparrow$ | $\rightarrow$ | $\uparrow$ or $\rightarrow$ | $\uparrow$ or $\rightarrow$ |
| ×     | ע or א     | ⊿ or א        | 7                           | Ы                           |

## Quantum Key Agreement

- Requires two channels
  - one quantum channel (subject to adversary and/or noises)
  - one public channel (authentic, unjammable, subject to eavesdropping)
    - Protocol does not work without such a channel

#### The Protocol [Bennet & Brassard'84]

- Alice sends to Bob a sequence of photons, each of which is chosen randomly and independently to be in one of the four polarizations
  - Alice knows their states
- 2. For each photon, Bob randomly chooses either the rectilinear based or the diagonal base to measure
  - Bob record the bases he used as well as the measurement

#### The Protocol [Bennet & Brassard'84]

- 3. Bob publicly announces his basis of measurements
- 4. Alice publicly tells Bob which measurement basis are correct and which ones are not
  - For the photons that Bob uses the correct measurement, Alice and Bob share the same results

See the following page for an example: http://en.wikipedia.org/wiki/Quantum\_key\_distribution

#### The Protocol [Bennet & Brassard'84]

- 5. Alice and Bob reveal certain measurement results to see whether they agree
  - to detect whether an adversary is involved or the channel is too noisy
- Why attackers fail
  - Any measurement & resending will disturb the results with 50% probability

### **Additional Steps**

- Information reconciliation
  - Figure out which bits are different between Alice and Bob
  - Conducted over a public channel
- Privacy amplification
  - Reducing/eliminating Eve's partial knowledge of a key

#### Coming Attractions ...

 Review of some HW/Quiz questions

