Cryptography
CS 555

Topic 25: Quantum Cryptography
Outline and Readings

• Outline:
 • What is Identity Based Encryption
 • Quantum cryptography

• Readings:
Identity Based Encryption

- Idea: Allow an arbitrary string (e.g., an email address) to be used as a public key
- Benefit: Easy to obtain authentic public key.
- Catch: Needs a Trusted Third Party (TTP).

- TTP publishes public parameters, and has master secret.
- A user can register with the TTP to obtain private key corresponding to an identity string.
- A sender can encrypt a message with public parameter and receiver’s identity string.
- Exist constructions using parings (elliptic curves).
- TTP generates everyone’s private key, and can decrypt anything.
• Quantum Cryptography
 – based on a survey by Hoi-Kwong Lo.
 – And on
 http://en.wikipedia.org/wiki/Quantum_key_distribution
Quantum Mechanics & Cryptography

• Quantum communication
 – Protect communication using principles of physics

• Quantum computing
 – Can efficiently solve some problems that are computationally infeasible for traditional computers to solve
 • e.g., Shor’s efficient algorithm for factoring
 – Exploits quantum superposition and entanglement
 • N bits in classical computers can only be in one of 2^N states
 • N qubits can be in an arbitrary superposition of up to 2^N different states simultaneously
 – When measured, it collapse into one state with some probability
 • Quantum computers can compute with all states simultaneously
Properties of Quantum Information

• *Wave function collapse*
 – A superposition when measured by an observer, collapse to a specific state
 – Measurement of a signal changes it
• A quantum state is described as a vector
 – e.g., a photon has a quantum state,
 – quantum cryptography often uses photons in 1 of 4 polarizations (in degrees): 0, 45, 90, 135

Encoding 0 and 1 under two basis

<table>
<thead>
<tr>
<th>Basis</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>⊕ (rectilinear)</td>
<td>↑</td>
<td>→</td>
</tr>
<tr>
<td>× (diagonal)</td>
<td>↘</td>
<td>↘</td>
</tr>
</tbody>
</table>
Properties of Quantum Information

• No way to distinguish which of ↑↑→↓ a photon is
• Quantum “no-cloning” theorem: an unknown quantum state cannot be cloned.
• Measurement generally disturbs a quantum state
 – one can set up a rectilinear measurement or a diagonal measurement
 • a rectilinear measurement disturbs the states of those diagonal photons having 45/135
• Effect of measuring

<table>
<thead>
<tr>
<th>Basis</th>
<th>↑</th>
<th>→</th>
<th>↑ or →</th>
<th>↑ or →</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>↑</td>
<td>→</td>
<td>↑ or →</td>
<td>↑ or →</td>
</tr>
<tr>
<td>×</td>
<td>↑ or ↓</td>
<td>↑ or ↓</td>
<td>↑</td>
<td>↓</td>
</tr>
</tbody>
</table>
Quantum Key Agreement

- Requires two channels
 - one quantum channel (subject to adversary and/or noises)
 - one public channel (authentic, unjammable, subject to eavesdropping)
 - Protocol does not work without such a channel
The Protocol [Bennet & Brassard’84]

1. Alice sends to Bob a sequence of photons, each of which is chosen randomly and independently to be in one of the four polarizations
 – Alice knows their states

2. For each photon, Bob randomly chooses either the rectilinear based or the diagonal base to measure
 • Bob record the bases he used as well as the measurement
The Protocol [Bennet & Brassard’84]

3. Bob publicly announces his basis of measurements

4. Alice publicly tells Bob which measurement basis are correct and which ones are not
 • For the photons that Bob uses the correct measurement, Alice and Bob share the same results

See the following page for an example:
http://en.wikipedia.org/wiki/Quantum_key_distribution
5. Alice and Bob reveal certain measurement results to see whether they agree
 • to detect whether an adversary is involved or the channel is too noisy

 • Why attackers fail
 – Any measurement & resending will disturb the results with 50% probability
Additional Steps

• Information reconciliation
 – Figure out which bits are different between Alice and Bob
 – Conducted over a public channel

• Privacy amplification
 – Reducing/eliminating Eve’s partial knowledge of a key
Coming Attractions …

- Review of some HW/Quiz questions