Cryptography
CS 555

Topic 23: Zero-Knowledge Proof and Cryptographic Commitment
Outline and Readings

• Outline
 • Zero-knowledge proof
 • Fiat-Shamir protocol
 • Schnorr protocol
 • Commitment schemes
 • Pedersen commitment schemes
 • Oblivious commitment based envelope

• Readings:
 • Barak’s notes on ZK
Interactive Proof Systems

• Traditionally, a proof for a statement is a static string such that one can verify for its correctness
 – Follows axioms and deduction rules.

• Generalizing proof systems to be interactive
 – A proof system involves an algorithm for a prover and a verifier.
 – A proof system can be probabilistic in ensuring correctness of the statement being proved
Zero Knowledge Proofs

- A protocol involving a prover and a verifier that enables the prover to prove to a verifier without revealing any other information
 - E.g., proving that a number n is of the form of the product of two prime number
 - Proving that one knows p, q such that $n=pq$
 - Proving that one knows x such $g^x \mod p = y$
Two Kinds of Zero-Knowledge Proofs

• ZK proof of a statement
 – convincing the verifier that a statement is true without yielding any other information
 – example of a statement, a propositional formula is satisfiable

• ZK proof of knowledge
 – convincing the verifier that one knows a secret, e.g., one knows the discrete logarithm \(\log_g(y) \)
Fiat-Shamir Protocol for Proving Quadratic Residues

- **Statement**: x is QR modulo n
- **Prover** knows w such that $w^2 = x \pmod{n}$
- **Repeat** the following one-round protocol t times
- **One-round Protocol**:
 - P to V: $y = r^2 \pmod{n}$, where r randomly chosen
 - V to P: $b \leftarrow \{0, 1\}$, randomly chosen
 - P to V: $z = rw^b$, i.e., $z = r$ if $b=0$, $z = rw$ if $b=1$
 - V verifies: $z^2 = yx^b$, i.e., $z^2 = y$ if $b=0$, $z^2 = yx$ if $b=0$
Observations on the Protocol

- Multiple rounds
- Each round consists of 3 steps
 - Commit; challenge; respond
- If challenge can be predicted, then cheating is possible.
 - Cannot convince a third party (even if the party is online)
 - Essence why it is ZK
- If respond to more than one challenge with one commit, then the secret is revealed.
 - Essence that this proves knowledge of the secret
Properties of Interactive Zero-Knowledge Proofs of Knowledge

- Completeness
 - Given honest prover and honest verifier, the protocol succeeds with overwhelming probability

- Soundness
 - no one who doesn’t know the secret can convince the verifier with nonnegligible probability

- Zero knowledge
 - the proof does not leak any additional information
Analysis of the Fair-Shamir protocol

• Completeness, when proven is given $w^2=x$ and both party follows protocol, the verification succeeds

• Soundness: if x is not QR, verifier will not be fooled.
 – Needs to show that no matter what the prover does, the verifier’s verification fails with some prob. (1/2 in this protocol)
 – Assumes that x is not QR, V receives y
 • Case 1: y is QR, then when $b=1$, checking $z^2=xy$ will fail.
 • Case 2: y is QNR, then when $b=0$, checking $z^2=y$ will fail.
 • Proof will be rejected with probability $\frac{1}{2}$.
Formalizing ZK property

• A protocol is ZK if a simulator exists
 – Taking what the verifier knows before the proof, can generate a communication transcript that is indistinguishable from one generated during ZK proofs
 • Intuition: One observes the communication transcript. If what one sees can be generated oneself, one has not learned anything new knowledge in the process.

• Three kinds of indistinguishability
 – Perfect (information theoretic)
 – Statistical
 – Computational
Honest Verifier ZK vs. Standard ZK

- Honest Verifier ZK means that a simulator exists for the Verifier algorithm V given in the protocol.

- Standard ZK requires that a simulator exists for any algorithm V^* that can play the role of the verifier in the protocol.
Fiat-Shamir is honest-verifier ZK

- The transcript of one round consists of
 - \((n, x, y, b, z)\) satisfying \(z^2 = yx^b\)
 - The bit \(b\) is generated by honest Verifier \(V\) is uniform independent of other values

- Construct a simulator for one-round as follows
 - Given \((x,n)\)
 - Pick at uniform random \(b \leftarrow \{0,1\}\),
 - If \(b=0\), pick random \(z\) and sets \(y = z^2 \mod n\)
 - If \(b=1\), pick random \(z\), and sets \(y = z^2x^{-1} \mod n\)
 - Output \((n,x,y,b,z)\)

- The transcript generated by the simulator is from the same prob. distribution as the protocol run
Fiat-Shamir is ZK

• Given any possible verifier V*, A simulator works as follows:

1. Given \((x,n)\) where \(x\) is QR; let \(T=(x,n)\)
2. Repeat steps 3 to 7 for
3. Randomly chooses \(b \leftarrow \{0,1\}\),
4. When \(b=0\), choose random \(z\), set \(y=z^2 \mod n\)
5. When \(b=1\), choose random \(z\), set \(y=z^2x^{-1} \mod n\)
6. Invoke let \(b'=V^*(T,y)\), if \(b' \neq b\), go to step 3
7. Output \((n,x,y,b,z)\); \(T\).append((\(n,x,y,b,z\)))

• Observe that both \(z^2\) and \(z^2x^{-1}\) are a random QR; they have the same prob. distribution, thus the success prob. of one round is at least \(\frac{1}{2}\)
Zero Knowledge Proof of Knowledge

• A ZKP protocol is a proof of knowledge if it satisfies a stronger soundness property:
 – The prover must know the witness of the statement

• Soundness property: If a prover A can convince a verifier, then a knowledge exactor exists
 – a polynomial algorithm that given A can output the secret

• The Fiat-Shamir protocol is also a proof of knowledge:
Knowledge Extractor for the QR Protocol

• If A can convince V that x is QR with probability significantly over $\frac{1}{2}$, then after A outputs y, then A can pass when challenged with both 0 and 1.

• Knowledge extractor
 – Given an algorithm A that can convince a verifier,
 – After A has sent y, first challenge it with 0, and receives z_1 such that $z_1^2 = y$
 – Then reset A to the state after sending y, challenge it with 1 and receives z_2 such that $z_2^2 = x$, then compute $s = z_1^{-1}z_2$, we have $s^2 = x$
Running in Parallel

• All rounds in Fiat-Shamir can be run in parallel
 1. Prover: picks random \(r_1, r_2, \ldots, r_t \), sends \(y_1=r_1^2, y_2=r_2^2, \ldots, y_t=r_t^2 \)
 2. Verifier checks the y’s are not 0 and sends \(t \) random bits \(b_1, \ldots b_t \)
 3. Prover sends \(z_1, z_2, \ldots, z_k \),
 4. Verifier accept if \(z_j^2=\frac{y_j x^{b_j}}{x} \mod n \)

• This protocol still a proof of knowledge.
• This protocol still honest verifier ZK.
• This protocol is no longer ZK!
 – Consider the \(V^* \) such that \(V^* \) chooses \(b_1, \ldots b_t \) to be the first \(t \) bits of \(H(y_1,y_2,\ldots,y_t) \), where \(H \) is a cryptographic hash function.
 – One can no longer generate an indistinguishable transcript.
Schnorr Id protocol (ZK Proof of Discrete Log)

- **System parameter:**\(p, g \) generator of \(\mathbb{Z}_p^* \)
- **Public identity:**\(v \)
- **Private authenticator:**\(s \quad v = g^s \mod p \)
- **Protocol (proving knowledge of discrete log of \(v \) with base \(g \))**
 1. A: picks random \(r \) in \([1..p-1]\), sends \(x = g^r \mod p \),
 2. B: sends random challenge \(e \) in \([1..2^t]\)
 3. A: sends \(y=r-se \mod (p-1) \)
 4. B: accepts if \(x = (g^yv^e \mod p) \)
Security of Schnorr Id protocol

• Completeness: straightforward.

• Soundness (proof of knowledge):
 – if A can successfully answer two challenges e_1 and e_2, i.e., A can output y_1 and y_2 such that $x = g^{y_1} v^{e_1} = g^{y_2} v^{e_2}$ (mod p) then $g^{(y_1 - y_2) = v^{(e_2 - e_1)}}$ and $g^{(y_1 - y_2) (e_2 - e_1)^{-1}}$ mod (p-1) = v thus the secret $s = (y_1 - y_2)(e_2 - e_1)^{-1}$ mod (p-1)

• ZK property
 – Is honest verifier ZK, how does the simulate works?
 – Is not ZK if the range of challenge e is chosen from a range that is too large ($2^t > \log n$). Why?
Commitment schemes

• An electronic way to temporarily hide a value that cannot be changed
 – Stage 1 (Commit)
 • Sender locks a message in a box and sends the locked box to another party called the Receiver
 – State 2 (Reveal)
 • the Sender proves to the Receiver that the message in the box is a certain message
Security properties of commitment schemes

- Hiding
 - at the end of Stage 1, no adversarial receiver learns information about the committed value

- Binding
 - at the end of Stage 1, no adversarial sender can successfully convince reveal two different values in Stage 2
A broken commitment scheme

- Using encryption
 - Stage 1 (Commit)
 - the Sender generates a key k and sends $E_k[M]$ to the Receiver
 - State 2 (Reveal)
 - the Sender sends k to the Receiver, the Receiver can decrypt the message

- What is wrong using the above as a commitment scheme?
Formalizing Security Properties of Commitment schemes

- Two kinds of adversaries
 - those with infinite computation power and those with limited computation power

- Unconditional hiding
 - the commitment phase does not leak any information about the committed message, in the information theoretical sense (similar to perfect secrecy)

- Computational hiding
 - an adversary with limited computation power cannot learn anything about the committed message (similar to semantic security)
Formalizing Security Properties of Commitment schemes

- **Unconditional binding**
 - after the commitment phase, an infinite powerful adversary sender cannot reveal two different values

- **Computational binding**
 - after the commitment phase, an adversary with limited computation power cannot reveal two different values

- No commitment scheme can be both unconditional hiding and unconditional binding
Another (also broken) commitment scheme

- Using a one-way function H
 - Stage 1 (Commit)
 - the Sender sends $c = H(M)$ to the Receiver
 - State 2 (Reveal)
 - the Sender sends M to the Receiver, the Receiver verifies that $c = H(M)$

- What is wrong using this as a commitment scheme?
- A workable scheme (though cannot prove security)
 - Commit: choose r_1, r_2, sends $(r_1, H(r_1||M||r_2))$
 - Reveal (open): sends M, r_2.
 - Disadvantage: Cannot do much interesting things with the commitment scheme.
Pedersen Commitment Scheme

• Setup
 - The receiver chooses two large primes \(p \) and \(q \), such that \(q | (p-1) \). Typically, \(p \) is 1024 bit, \(q \) is 160 bit. The receiver chooses an element \(g \) that has order \(q \), she also chooses secret \(a \) randomly from \(\mathbb{Z}_q = \{0, \ldots, q-1\} \). Let \(h = g^a \mod p \). Values \(<p, q, g, h> \) are the public parameters and \(a \) is the private parameter.
 • We have \(g^q = 1 \pmod{p} \), and we have \(\langle g \rangle = \{g, g^2, g^3, \ldots, g^q=1\} \), the subgroup of \(\mathbb{Z}_p^* \) generated by \(g \)

• Commit
 - The domain of the committed value is \(\mathbb{Z}_q \). To commit an integer \(x \in \mathbb{Z}_q \), the sender chooses \(r \in \mathbb{Z}_q \), and computes \(c = g^x h^r \mod p \)

• Open
 - To open a commitment, the sender reveal \(x \) and \(r \), the receiver verifies whether \(c = g^x h^r \mod p \).
Pedersen Commitment Scheme (cont.)

• Unconditionally hiding
 – Given a commitment c, every value x is equally likely to be the value committed in c.
 – For example, given x, r, and any x’, there exists r’ such that \(g^x h^r = g^{x'} h^{r'} \), in fact \(r = (x-x')a^{-1} + r \mod q \).

• Computationally binding
 – Suppose the sender open another value \(x' \neq x \). That is, the sender find x’ and r’ such that c = \(g^{x'} h^{r'} \mod p \). Now the sender knows x, r, x’, r’ s.t., \(g^x h^r = g^{x'} h^{r'} \mod p \), the sender can compute \(\log_g(h) = (x'-x)(r-1)(r')^{-1} \mod q \). Assume DL is hard, the sender cannot open the commitment with another value.
Pedersen Commitment – ZK Prove know how to open (without actually opening)

• Public commitment $c = g^x h^r \pmod{p}$
• Private knowledge x, r
• Protocol:
 1. P: picks random y, s in $[1..q]$, sends $d = g^y h^s \pmod{p}$
 2. V: sends random challenge e in $[1..q]$
 3. P: sends $u = y + ex, v = s + er \pmod{q}$
 4. V: accepts if $g^u h^v = dc^e \pmod{p}$
• Security property – similar to Schnorr protocol
Proving that the committed value is either 0 or 1

- Let \(\langle p, q, g, h \rangle \) be the public parameters of the Pedersen commitment scheme. Let \(x \in \{0, 1\} \), \(c = g^x h^r \mod p \)
- The prover proves to the verifier that \(x \) is either 0 or 1 without revealing \(x \)
 - Note that \(c = h^r \) or \(c = gh^r \)
 - The prover proves that she knows either \(\log_h(c) \) or \(\log_h(c/g) \)
 - Recall if the prover can predict the challenge \(e \), she can cheat
 - The prover uses Schnorr protocol to prove the one she knows, and to cheat the other one
Bit Proof Protocol (cont.)

- Recall Schnorr Protocol of proving knowledge of discrete log of c with basis h:
 - $P \rightarrow V: x; \quad V \rightarrow P: e; \quad P \rightarrow V: y; \quad$ Verifies: $x = h^y c^e$
 - To cheat, chooses e and f, compute x
 - To prove one, and cheat in another, conduct two proofs, one for challenge e_1 and the other for e_2 with $e_1 + e_2 = e$
 - Prover can control exactly one of e_1 and e_2, Verifier doesn’t know which

- Case 1: $c = h^r$
 - $P \rightarrow V: \text{choose } w, y_1, e_1 \text{ from } Z_q, \text{ sends }$
 - $x_0 = h^w, \quad x_1 = h^{y_1(c/g)^{e_1}}$
 - $V \rightarrow P: e$
 - $P \rightarrow V: e_0 = e - e_1 \mod q, y_0 = w + r \cdot e_0 \mod q \text{ sends }$
 - y_0, y_1, e_0, e_1
 - $V: \text{verify } e = e_0 + e_1, \quad x_0 = h^{y_0} c^{e_0}, \quad x_1 = h^{y_1(c/g)^{e_1}}$
Case 2: $c=gh^r$

- $P \rightarrow V$: choose w, y_0, e_0 from \mathbb{Z}_q, computes $x_1 = h^w$, $x_0 = h^{z_0}c^{e_0}$, and sends a_0, a_1
- $V \rightarrow P$: e
- $P \rightarrow V$: computes $e_1 = e - e_0 \mod q$, $y_1 = w + r \cdot e_1 \mod q$, sends y_0, y_1, e_0, e_1
- V: verify $e = e_0 + e_1$, $x_0 = h^{y_0}c^{e_0}$, $x_1 = h^{y_1}(c/g)^{e_1}$
Security of Bit Proof Protocol

• Zero-knowledge
 – The verifier cannot distinguish whether the prover committed a 0 or 1, as what the prover sends in the two cases are drawn from the same distribution.

• Soundness
 – Bit proof protocol is a proof of knowledge
An Application

- Oblivious Commitment Based Envelope and Oblivious Attribute Certificates
- Jiangtao Li, Ninghui Li: OACerts: Oblivious Attribute Certificates. ACNS 2005: 301-317
Oblivious Attribute Certificates (OACerts)

California Driver License
Expired: 04-11-06
Name: Bear Boy
DoB: 12-01-96
Address: 206 Sweet Rd
Sex: M
HT: 20"
WT: 75
Signed by PMV

California Driver License
Expired: 04-11-06
Name: com(Bear Boy)
DoB: com(12-01-96)
Address: com(206 Sweet Rd)
Sex: com(M)
HT: com(20"
WT: com(75)
Signed by PMV

X.509 Certificate

OACerts
Features of OACerts

- Selective show of attributes
- Zero-Knowledge proof that attributes satisfy some properties
- Compatible with existing certificate systems, e.g., X.509
- Revocation can be handled using traditional techniques, e.g., CRL
Oblivious Usage of Attributes

Receiver

\[c = \text{commit}(a) \]

Case 1:
\[\text{Pred}(a) = \text{true} \]

Case 2:
\[\text{Pred}(a) = \text{false} \]

Sender

Message:
Policy: Pred

Oblivious Commitment-Based Envelope (OCBE)
Formal Definition of OCBE

1. **CA-Setup**
2. **CA-Commit**
3. **Initialization**
4. **Interaction**
5. **Open**

- **CA**
 - chooses commit
 - chooses r
 - $c = \text{commit}(a, r)$
- **Sender**
 - chooses M
 - chooses Pred
- **Receiver**
 - chooses a
 - a, r, c
 - Interaction
 - If $\text{Pred}(a) = \text{true}$ outputs M
Oblivious

- OCBE is oblivious if no adversary has a non-negligible advantage in the following game.

Challenger
- run setup
- chooses $b \in \{1, 2\}$
- sets $a = a_b$
- $c = \text{commit}(a, r)$

Receiver

Adversary
- picks a_1, a_2
- chooses Pred, M

Sender

Interaction
- b'

Adversary wins if $b = b'$
Secure Against the Receiver

- OCBE is secure against receiver if no adversary has a non-negligible advantage in the following game.

\[c = \text{commit}(a, r) \]

Challenger
- chooses \(b \in \{1, 2\} \)
- sets \(M = M_b \)

Sender
- run setup

Adversary
- picks \(a \)
- chooses \(M_1, M_2, \) Pred, s.t. \(\text{Pred}(a) = \text{false} \)

Interaction
- \(a \)
- \(c, r \)
- \(\text{Pred, } M_1, M_2 \)
- \(b' \)

Adversary wins if \(b = b' \)
OCBE Protocols

• We developed the following OCBE protocols for the Pedersen commitment schemes
 – Committed value \(=,>,<,\neq,\leq,\) or \(\geq\) a known value
 – Committed value lies in a certain range
 – Committed value satisfy conjunction of two conditions
 – Committed value satisfy disjunction of two conditions
Coming Attractions …

• Topics
 – Secure function evaluation, Oblivious transfer, secret sharing
 – Identity based encryption & quantum cryptography