Cryptography CS 555

Topic 23: Zero-Knowledge Proof and Cryptographic Commitment

Outline and Readings

- Outline
 - Zero-knowledge proof
 - Fiat-Shamir protocol
 - Schnorr protocol
 - Commitment schemes
 - Pedersen commitment schemes
 - Oblivious commitment based envelope
- Readings:
 - Barak's notes on ZK

Interactive Proof Systems

- Traditionally, a proof for a statement is a static string such that one can verify for its correctness
 - Follows axioms and deduction rules.
- Generalizing proof systems to be interactive
 - A proof system involves an algorithm for a prover and a verifier.
 - A proof system can be probabilistic in ensuring correctness of the statement being proved

Zero Knowledge Proofs

- A protocol involving a prover and a verifier that enables the prover to prove to a verifier without revealing any other information
 - E.g., proving that a number n is of the form of the product of two prime number
 - Proving that one knows p,q such that n=pq
 - Proving that one knows x such $g^x \mod p = y$

Two Kinds of Zero-Knowledge Proofs

- ZK proof of a statement
 - convincing the verifier that a statement is true without yielding any other information
 - example of a statement, a propositional formula is satisfiable
- ZK proof of knowledge
 - convincing the verifier that one knows a secret, e.g., one knows the discrete logarithm $\log_{q}(y)$

Fiat-Shamir Protocol for Proving Quadratic Residues

- Statement: x is QR modulo n
- Prover knows w such that w²=x (mod n)
- Repeat the following one-round protocol t times
- One-round Protocol:
 - P to V: $y = r^2 \mod n$, where r randomly chosen
 - V to P: $b \leftarrow \{0,1\}$, randomly chosen
 - P to V: $z=rw^b$, i.e., z=r if b=0, z=rw if b=1
 - V verifies: $z^2=yx^b$, i.e., $z^2=y$ if b=0, $z^2=yx$ if b=0

Observations on the Protocol

- Multiple rounds
- Each round consists of 3 steps
 - Commit; challenge; respond
- If challenge can be predicted, then cheating is possible.
 - Cannot convince a third party (even if the party is online)
 - Essense why it is ZK
- If respond to more than one challenge with one commit, then the secret is revealed.
 - Essence that this proves knowledge of the secret

Properties of Interactive Zero-Knowledge Proofs of Knowledge

Completeness

Given honest prover and honest verifier, the protocol succeeds with overwhelming probability

Soundness

no one who doesn't know the secret can convince the verifier with nonnegligible probability

Zero knowledge

- the proof does not leak any additional information

Analysis of the Fair-Shamir protocol

- Completeness, when proven is given w²=x and both party follows protocol, the verification succeeds
- Soundness: if x is not QR, verifier will not be fooled.
 - Needs to show that no matter what the prover does, the verifier's verification fails with some prob. (1/2 in this protocol)
 - Assumes that x is not QR, V receives y
 - Case 1: y is QR, then when b=1, checking $z^2=yx$ will fail.
 - Case 2: y is QNR, then when b=0, checking $z^2=y$ will fail.
 - Proof will be rejected with probability 1/2.

Formalizing ZK property

- A protocol is ZK if a simulator exists
 - Taking what the verifier knows before the proof, can generate a communication transcript that is indistinguishable from one generated during ZK proofs
 - Intuition: One observes the communication transcript. If what one sees can be generated oneself, one has not learned anything new knowledge in the process.
- Three kinds of indistinguishability
 - Perfect (information theoretic)
 - Statistical
 - Computational

Honest Verifier ZK vs. Standard ZK

 Honest Verifier ZK means that a simulator exists for the Verifier algorithm V given in the protocol.

 Standard ZK requires that a simulator exists for any algorithm V* that can play the role of the verifier in the protocol.

Fiat-Shamir is honest-verifier ZK

- The transcript of one round consists of
 - (n, x, y, b, z) satisfying $z^2=yx^b$
 - The bit b is generated by honest Verifier V is uniform independent of other values
- Construct a simulator for one-round as follows
 - Given (x,n)
 - Pick at uniform random $b \leftarrow \{0,1\}$,
 - If b=0, pick random z and sets $y=z^2 \mod n$
 - If b=1, pick random z, and sets $y=z^2x^{-1}$ mod n
 - Output (n,x,y,b,z)
- The transcript generated by the simulator is from the same prob. distribution as the protocol run

Fiat-Shamir is ZK

- Given any possible verifier V*, A simulator works as follows:
 - 1. Given (x,n) where x is QR; let T=(x,n)
 - 2. Repeat steps 3 to 7 for
 - 3. Randomly chooses $b \leftarrow \{0,1\}$,
 - 4. When b=0, choose random z, set $y=z^2 \mod n$
 - 5. When b=1, choose random z, set $y=z^2x^{-1} \mod n$
 - 6. Invoke let b'=V*(T,y), if b' \neq b, go to step 3
 - Output (n,x,y,b,z); T.append((n,x,y,b,z));
- Observe that both z² and z²x⁻¹ are a random QR; they have the same prob. distribution, thus the success prob. of one round is at least ¹/₂

Zero Knowledge Proof of Knowledge

- A ZKP protocol is a proof of knowledge if it satisfies a stronger soundness property:
 - The prover must know the witness of the statement
- Soundness property: If a prover A can convince a verifier, then a knowledge exactor exists
 - a polynomial algorithm that given A can output the secret
- The Fiat-Shamir protocol is also a proof of knowledge:

Knowledge Extractor for the QR Protocol

- If A can convince V that x is QR with probability significanly over ½, then after A outputs y, then A can pass when challenged with both 0 and 1.
- Knowledge extractor
 - Given an algorithm A that can convince a verifier,
 - After A has sent y, first challenge it with 0, and receives z_1 such that $z_1^2=y$
 - Then reset A to the state after sending y, challenge it with 1 and receives z_2 such that $z_2^2=xy$, then compute $s=z_1^{-1}z_2$, we have $s^2=x$

Running in Parallel

- All rounds in Fiat-Shamir can be run in parallel
 - 1. Prover: picks random $r_1, r_2, ..., r_t$, sends $y_1 = r_1^2, y_2 = r_2^2, ..., y_t = r_t^2$
 - 2. Verifier checks the y's are not 0 and sends t random bits $b_1, \dots b_t$
 - 3. Prover sends z_1, z_2, \dots, z_k ,
 - 4. Verifier accept if $z_i^2 \equiv y_i x^{b_j} \mod n$
- This protocol still a proof of knowledge.
- This protocol still honest verifier ZK.
- This protocol is no longer ZK!
 - Consider the V* such that V* chooses $b_1,...,b_t$ to be the first t bits of $H(y_1,y_2,...,y_t)$, where H is a cryptographic hash function.
 - One can no longer generate an indistinguishable transcript.

Schnorr Id protocol (ZK Proof of Discrete Log)

- System parameter: p, g generator of Z_p^*
- Public identity:
- Private authenticator: $s = v = g^s \mod p$
- Protocol (proving knowledge of discrete log of v with base g)
 - 1. A: picks random r in [1..p-1], sends $x = g^r \mod p$,
 - 2. B: sends random challenge e in [1..2^t]
 - 3. A: sends y=r-se mod (p-1)
 - 4. B: accepts if $x = (g^y v^e \mod p)$

Security of Schnorr Id protocol

- Completeness: straightforward.
- Soundness (proof of knowledge):
 - if A can successfully answer two challenges e_1 and e_2 , i.e., A can output y_1 and y_2 such that $x=g^{y_1}v^{e_1}=g^{y_2}v^{e_2}$ (mod p) then $g^{(y_1-y_2)}=v^{(e_2-e_1)}$ and $g^{(y_1-y_2)} \stackrel{(e_2-e_1)^{-1} \mod (p-1)}{=}v$ thus the secret $s=(y_1-y_2)(e_2-e_1)^{-1} \mod (p-1)$

ZK property

- Is honest verifier ZK, how does the simulate works?
- Is not ZK if the range of challenge e is chosen from a range that is too large (2^t>log n). Why?

Commitment schemes

- An electronic way to temporarily hide a value that cannot be changed
 - Stage 1 (Commit)
 - Sender locks a message in a box and sends the locked box to another party called the Receiver
 - State 2 (Reveal)
 - the Sender proves to the Receiver that the message in the box is a certain message

Security properties of commitment schemes

- Hiding
 - at the end of Stage 1, no adversarial receiver learns information about the committed value
- Binding
 - at the end of State 1, no adversarial sender can successfully convince reveal two different values in Stage 2

A broken commitment scheme

- Using encryption
 - Stage 1 (Commit)
 - the Sender generates a key k and sends E_k[M] to the Receiver
 - State 2 (Reveal)
 - the Sender sends k to the Receiver, the Receiver can decrypt the message
- What is wrong using the above as a commitment scheme?

Formalizing Security Properties of Commitment schemes

- Two kinds of adversaries
 - those with infinite computation power and those with limited computation power
- Unconditional hiding
 - the commitment phase does not leak any information about the committed message, in the information theoretical sense (similar to perfect secrecy)
- Computational hiding
 - an adversary with limited computation power cannot learn anything about the committed message (similar to semantic security)

Formalizing Security Properties of Commitment schemes

- Unconditional binding
 - after the commitment phase, an infinite powerful adversary sender cannot reveal two different values
- Computational binding
 - after the commitment phase, an adversary with limited computation power cannot reveal two different values
- No commitment scheme can be both unconditional hiding and unconditional binding

Another (also broken) commitment scheme

- Using a one-way function *H*
 - Stage 1 (Commit)
 - the Sender sends c=H(M) to the Receiver
 - State 2 (Reveal)
 - the Sender sends *M* to the Receiver, the Receiver verifies that c=H(M)
- What is wrong using this as a commitment scheme?
- A workable scheme (though cannot prove security)
 - Commit: choose r1, r2, sends (r1, H(r1||M||r2))
 - Reveal (open): sends M, r2.
 - Disadvantage: Cannot do much interesting things with the commitment scheme.

Pedersen Commitment Scheme

- Setup
 - The receiver chooses two large primes p and q, such that q|(p-1). Typically, p is 1024 bit, q is 160 bit. The receiver chooses an element g that has order q, she also chooses secret a randomly from $Z_q = \{0, ..., q-1\}$. Let $h = g^a \mod p$. Values $\langle p, q, g, h \rangle$ are the public parameters and a is the private parameter.
 - We have $g^q = 1 \pmod{p}$, and we have $\langle g \rangle = \{g, g^2, g^3, ..., g^q = 1\}$, the subgroup of Z_p^* generated by g
- Commit
 - The domain of the committed value is Z_q . To commit an integer x $\in Z_q$, the sender chooses $r \in Z_q$, and computes $c = g^x h^r \mod p$
- Open
 - To open a commitment, the sender reveal x and r, the receiver verifies whether $c = g^{x}h^{r} \mod p$.

Pedersen Commitment Scheme (cont.)

- Unconditionally hiding
 - Given a commitment c, every value x is equally likely to be the value committed in c.
 - For example, given x,r, and any x', there exists r' such that $g^{x}h^{r} = g^{x'}h^{r'}$, in fact $r = (x-x')a^{-1} + r \mod q$.
- Computationally binding
 - Suppose the sender open another value x' ≠ x. That is, the sender find x' and r' such that c = g^{x'}h^{r'} mod p. Now the sender knows x,r,x',r' s.t., g^xh^r = g^{x'}h^{r'} (mod p), the sender can compute log_g(h) = (x'-x)·(r-r')⁻¹ mod q. Assume DL is hard, the sender cannot open the commitment with another value.

Pedersen Commitment – ZK Prove know how to open (without actually opening)

- Public commitment $c = g^{x}h^{r} \pmod{p}$
- Private knowledge x,r
- Protocol:
 - P: picks random y, s in [1..q], sends d = g^yh^s mod p
 - 2. V: sends random challenge e in [1..q]
 - 3. P: sends u=y+ex, v=s+er (mod q)
 - 4. V: accepts if $g^{u}h^{v} = dc^{e} \pmod{p}$
- Security property similar to Schnorr protocol

Proving that the committed value is either 0 or 1

- Let <p,q,g,h> be the public parameters of the Pedersen commitment scheme. Let $x \in \{0,1\}, \, c = g^x h^r \ mod \ p$
- The prover proves to the verifier that x is either 0 or 1 without revealing x
 - Note that $c = h^r$ or $c = gh^r$
 - The prover proves that she knows either $\log_{\rm h}(c)$ or $\log_{\rm h}(c/g)$
 - Recall if the prover can predict the challenge e, she can cheat
 - The prover uses Schnorr protocol to prove the one she knows, and to cheat the other one

Bit Proof Protocol (cont.)

- Recall Schnorr Protcol of proving knowledge of discrete log of c with basis h:
 - $P \rightarrow V: x; V \rightarrow P: e; P \rightarrow V: y; Verifies: x=h^yc^e$
 - To cheat, chooses e and f, compute x
 - To prove one, and cheat in another, conduct two proofs, one for challenge e_1 and the other for e_2 with $e_1+e_2=e$
 - Prover can control exactly one of e_1 and e_2 , Verifier doesn't know which
- Case 1: c=h^r
 - $\begin{array}{ll} & P \rightarrow V: \mbox{ choose } w, y_1, e_1 \mbox{ from } Z_q, \mbox{ sends } & x_0 = h^w, \\ & x_1 = h^{y_1} (c/g)^{e_1} \end{array}$
 - $\ \mathsf{V} \to \mathsf{P}: \mathsf{e}$
 - $P \rightarrow V : e_0 = e e_1 \mod q, y_0 = w + r \cdot e_0 \mod q \text{ sends } y_0, y_1, e_0, e_1$
 - V: verify $e=e_0+e_1$, $x_0=h^{y_0}c^{e_0}$, $x_1=h^{y_1}(c/g)^{e_1}$

Bit Proof Protocol (cont.)

- Case 2: c=gh^r
 - $\begin{array}{ll} P \rightarrow V: \mbox{ choose } w, y_0, e_0 \mbox{ from } Z_q, \mbox{ computes } x_1 = h^w, \\ x_0 = h^{z0} c^{e0}, \mbox{ and sends } a_0, \mbox{ } a_1 \end{array}$
 - $V \rightarrow P: e$
 - $P → V : computes e_1 = e e_0 \mod q, y_1 = w + r \cdot e_1 \mod q,$ $sends y_0, y_1, e_0, e_1$
 - V: verify $e=e_0+e_1$, $x_0=h^{y_0}c^{e_0}$, $x_1=h^{y_1}(c/g)^{e_1}$

Security of Bit Proof Protocol

- Zero-knowledge
 - The verifier cannot distinguish whether the prover committed a 0 or 1, as what the prover sends in the two cases are drawn from the same distribution.
- Soundness
 - Bit proof protocol is a proof of knowledge

An Application

- Oblivious Commitment Based Envelope and Oblivious Attribute Certificates
- Jiangtao Li, Ninghui Li: OACerts: Oblivious Attribute Certificates. ACNS 2005: 301-317

Oblivious Attribute Certificates (OACerts)

Features of OACerts

- Selective show of attributes
- Zero-Knowledge proof that attributes satisfy some properties
- Compatible with existing certificate systems, e.g., X.509
- Revocation can be handled using traditional techniques, e.g., CRL

Oblivious Usage of Attributes

Oblivious Commitment-Based Envelope (OCBE)

Topic 23

Formal Definition of OCBE

OCBE is oblivious if no adversary has a non-negligible advantage in the following game.

run steup

Secure Against the Receiver

 OCBE is secure against receiver if no adversary has a nonnegligible advantage in the following game.

OCBE Protocols

- We developed the following OCBE protocols for the Pedersen commitment schemes
 - Committed value =,>,<, \neq , \leq , or \geq a known value
 - Committed value lies in a certain range
 - Committed value satisfy conjunction of two conditions
 - Committed value satisfy disjunction of two conditions

Coming Attractions ...

- Topics
 - Secure function evaluation, Oblivious transfer, secret sharing
 - Identity based encryption & quantum cryptography

