# Cryptography CS 555



### Topic 22: Digital Schemes (2)

### **Outline and Readings**

- Outline
  - The DSA Signature Scheme
  - Lamport's one-time signature
  - Blind signature
- Readings:
  - Katz and Lindell: Chapter 12.1-12.4



# Digital Signature Algorithm (DSA)

#### Also known as Digital Signature Standard (DSS) Key generation

- Select two prime numbers (p,q) such that q | (p-1)
- Early standard recommended p to be between 512 and 1024 bits, and q to be 160 bits
- Current recommendation for length: (1024,160), (2048,224), (2048,256), and (3072,256).
  - The size of q must resist exhaustive search
  - The size of p must resist discrete log
- Choose g to be an element in  $Z_{p}^{*}$  with order q
  - Let  $\alpha$  be a generator of  $Z_p^*$ , and set  $g = \alpha^{(p-1)/q} \mod p$
- Select  $1 \le x \le q-1$ ; Compute  $y = g^x \mod p$ Public key: (p, q, g, y) Private key: x

### DSA

#### Signing message M:

- Select a random integer k, 0 < k < q</li>
- Compute

#### $r = (g^{k} \mod p) \mod q$ s = k<sup>-1</sup> ( h(M) + xr) mod q

- Signature: (r, s)
  - Signature consists of two 160-bit numbers, when q is 160 bit



### DSA

Signature: (r, s)  $r = (g^k \mod p) \mod q$  $s = k^{-1} (h(M) + xr) \mod q$ 

#### Verification

- Verify 0 < r < q and 0 < s < q, if not, invalid
- Compute

$$\begin{split} u_1 &= h(M)s^{-1} \mod q, \\ u_2 &= rs^{-1} \mod q \\ \bullet & \text{Valid iff } r = (g^{u_1}y^{u_2} \mod p) \mod q \\ g^{u_1}y^{u_2} &= g^{h(M)s^{-1}}g^{xr \ s^{-1}} \\ &= g^{(h(M)+xr)s^{-1}} = g^k \pmod{p} \end{split}$$

# **DSA** Security

- The value k must be unique and unpredictable.
- No security proof exists, even assuming that the hash function is a random oracle.
- No vulnerability known either.
- Adopted as standard in 1991
  - Main benefits over RSA, which helps its adoption, are
    - One cannot use the implementation for encryption
    - Signature size (320 bit) is smaller than RSA

# **One-Time Digital Signatures**

- One-time digital signatures: digital schemes used to sign, at most one message; otherwise signature can be forged.
- A new public key is required for each signed message.
- Advantage: signature generation and verification are very efficient and is useful for devices with low computation power.

# Lamport One-time Signature

#### To sign one bit:

- Choose as secret keys x<sub>0</sub>, x<sub>1</sub>
  - x<sub>0</sub> represents '0'
  - x<sub>1</sub> represents '1'
- public key  $(y_0, y_1)$ :
  - $y_0 = f(x_0),$

$$- y_1 = f(x_1).$$

- Where f is a one-way function
- Signature is x<sub>0</sub> if the message is 0 or x<sub>1</sub> if message is 1.
- To sign a message m, use hash and sigh each bit of h(m)



## Blind Signature Schemes

- A wants B's signature on a message m, but doesn't want B to know the message m or the signature
- Applications: electronic cash
  - Goal: anonymous spending
  - The bank signs a bank note, but A doesn't want B to know the note, as then B can associate the spending of B with A's identity

### Chaum's Bind Signature Protocol Based on RSA

- Setup:
  - B has public key (n,e) and private key d
  - A has m
- Actions:
  - (blinding) A picks random  $k\!\in\!Z_n\mathcal{-}\{0\}$  computes m'=mke mod n and sends to B
  - (signing) B computes s'=(m')<sup>d</sup> mod n and sends to A
  - (unblinding) A computes s=s'k<sup>-1</sup> mod n, which is B's signature on m

# Coming Attractions ...

- In the next two weeks
  - Zero knowledge proof protocols
  - Commitment schemes
  - Secure function evaluation, Oblivious transfer, secret sharing
  - Identity based encryption & quantum cryptography
- We will be using materials not in the textbook

