# Cryptography CS 555



### Topic 21: Digital Schemes (1)

### **Outline and Readings**

- Outline
  - Digital signature
  - RSA signatures
  - Hash and sign
- Readings:
  - Katz and Lindell: Chapter 12.1-12.4



### Digital Signatures: The Problem

- Consider the real-life example where a person pays by credit card and signs a bill; the seller verifies that the signature on the bill is the same with the signature on the card
- Contracts are valid if they are signed.
- Signatures provide non-repudiation.
  - ensuring that a party in a dispute cannot repudiate, or refute the validity of a statement or contract.
- Can we have a similar service in the electronic world?
  - Does Message Authentication Code provide non-repudiation? Why?

## **Digital Signatures**

- MAC: One party generates MAC, one party verifies integrity.
- Digital signatures: One party generates signature, many parties can verify.
- Digital Signature: a data string which associates a message with some originating entity.
- Digital Signature Scheme:
  - a signing algorithm: takes a message and a (private) signing key, outputs a signature
  - a verification algorithm: takes a (public) verification key, a message, and a signature
- Provides:
  - Authentication, Data integrity, Non-Repudiation

### Digital Signature

- A signature scheme consists of the following three PPT algorithms
  - $-(pk,sk) \leftarrow Gen(1^n)$ key generation $-\sigma \leftarrow Sign_{sk}(m)$ signing $-b := Vrfy_{pk}(m,t)$ verification algorithmb=1 meaning valid, b=0 meaning invalidMust satisfy  $\forall (pk,sk) \forall m Vrfy_{pk}(m, Sign_{sk}(m)) = 1$

Assume that receiver has an authentic copy of the sender's public key, then receiver can verify that a document is indeed sent by the sender.

### Security of Signature Schemes

- The experiment Sig-forge<sub>A,Π</sub>
  - $(pk,sk) \leftarrow \mathbf{Gen}(1^n)$
  - Adversary A is given pk and oracle access to **Sign**<sub>sk</sub>(·)
  - Adversary outputs (m,  $\sigma$ ). Let Q denote the set of all queries that A asked to the oracle.
  - Adversary wins if  $Vrfy_{pk}(m, t) = 1$  and  $m \notin Q$
- A signature Π is existential unforgeable under an adaptive chosen-message attack (or just secure) if for all PPT A, there exists a negligible function negl such that Pr[Mac-forge<sub>A,Π</sub>=1] ≤ negl(n)

### "Textbook RSA" Signatures

Key generation (as in RSA encryption):

Public key: (e, n) Private key: d, used for verification used for generation

#### Signing message m with private key

• Compute  $\sigma = m^d \mod n$ 

Verifying signature  $\sigma$  using public key (e, n)

Check whether σ<sup>e</sup> mod n = m

### Insecurity of "Textbook RSA"

- A no-message attack
  - Choose arbitrary  $\sigma$ , compute m=  $\sigma^e \mod n$
  - (m, $\sigma$ ) is a valid pair
  - One cannot control what is m
- Forging signature on arbitrary message
  - To forge signature on message m, query signing oracle for  $m_1$  (obtaining  $\sigma_1$ ) and  $m_2=m/m_1$  (mod n) (obtaining  $\sigma_2$ )

– (m,  $\sigma_1 \sigma_2$ ) is a valid pair

### **RSA Signatures with Hash**

Use a hash function H:  $\{0,1\}^* \rightarrow Z_n^*$ 

#### Signing message m with private key (n,d)

- Compute  $\sigma = H(m)^d \mod n$
- Verifying signature  $\sigma$  using public key (e, n)
- Check whether  $\sigma^{e} \mod n = H(m)$

Can be proven secure assuming that H is random oracle. (This is not considered a valid proof of security, but means that no known attack exists.)

### Hash and Sign Paradigm

- Enabling the signing of arbitrary long message.
- Given a secure signing scheme (for a fixed message space), and a collision-resistant hash function, first hash and then sign is also secure.
  - "Textbook RSA" is insecure, so this result does not apply to hash and sign with RSA
  - Any attack either finds a collision or breaks the security of the signing scheme.

### Non-repudiation

- Nonrepudiation is the assurance that someone cannot deny something. Typically, nonrepudiation refers to the ability to ensure that a party to a contract or a communication cannot deny the authenticity of their signature on a document or the sending of a message that they originated.
- Can one deny a signature one has made?
- Does email provide non-repudiation?

### Coming Attractions ...

- Other Signature Schemes
- Reading: Katz & Lindell: Chapter 12.5,12.7

