Cryptography CS 555

Topic 20: Other Public Key Encryption Schemes

Outline and Readings

- Outline
 - Quadratic Residue
 - Rabin encryption
 - Goldwasser-Micali
 - Commutative encryption
 - Homomorphic encryption
- Readings:
 - Katz and Lindell: Chapter 11

\square	~

Review: Quadratic Residues Modulo A Prime

- Definition: a is a quadratic residue modulo p if it has a square root, i.e., ∃ b ∈Z_p^{*} such that b² ≡ a mod p,
 We write this as a ∈ QR_p
- Exactly half of elements in Z_p^{*} are in QR_p
 - let g be generator, $a=g^{j}$ is a quadratic residue iff. j is even.
- Each QR modulo p has two square roots in Z_p^{*}
- Legendre symbol indicates QR

$$\left(\frac{a}{p}\right) = \begin{cases} 0, \text{ if } p \mid a \\ 1, \text{ if } a \in QR_p \\ -1, \text{ if } a \in \overline{QR}_p \end{cases} \qquad \left(\frac{a}{p}\right) = a^{\frac{p-1}{2}} \mod p$$

Quadratic Residues Modulo a Composite n

Definition: a is a quadratic residue modulo n ($a \in QR_n$) if $\exists b \in Z_n^*$ such that $b^2 \equiv a \mod n$, otherwise when $a \neq 0$, a is a quadratic nonresidue

Fact: $a \in QR_n$, where n=pq, iff. $a \in QR_p$ and $a \in QR_q$

- The "only if" direction: $b^2 \equiv a \mod n$, then $b^2 \equiv a \mod p$ and $b^2 \equiv a \mod q$
- The "if" direction: If b² = a mod p and c² = a mod q, then the four solutions to the four equation sets

1. $x \equiv b \mod p$ and $x \equiv c \mod q$

2.
$$x \equiv b \mod p$$
 and $x \equiv -c \mod q$

3.
$$x \equiv -b \mod p$$
 and $x \equiv c \mod q$

4.
$$x \equiv -b \mod p$$
 and $x \equiv -c \mod q$

satisfies $x^2 \equiv a \mod n$

For example

- Fact: if n=pq, then x²=1 (mod n) has four solutions that are <n.
 - $x^2 \equiv 1 \pmod{n}$ if and only if both $x^2 \equiv 1 \pmod{p}$ and $x^2 \equiv 1 \pmod{q}$
 - Two trivial solutions: 1 and n-1
 - 1 is solution to $x \equiv 1 \pmod{p}$ and $x \equiv 1 \pmod{q}$
 - n-1 is solution to $x \equiv -1 \pmod{p}$ and $x \equiv -1 \pmod{q}$
 - Two other solutions
 - solution to $x \equiv 1 \pmod{p}$ and $x \equiv -1 \pmod{q}$
 - solution to $x \equiv -1 \pmod{p}$ and $x \equiv 1 \pmod{q}$
 - E.g., n=3×5=15, then $x^2\equiv 1 \pmod{15}$ has the following solutions: 1, 4, 11, 14

Quadratic Residues Modulo a Composite

- $|QR_n| = |QR_p| \cdot |QR_q| = (p-1)(q-1)/4$
- $|\overline{QR}| = 3(p-1)(q-1)/4$
- Jacobi symbol does not tell whether a number a is a QR $\left(\frac{a}{n}\right) = \left(\frac{a}{p}\right) \left(\frac{a}{q}\right)$
- when it is -1, then either a∈Q_p ∧ a∉Q_q or a∉Q_p ∧ a∈Q_q, then a is not QR
- when it is 1, then either $a \in Q_p \land a \in Q_q$ or $a \notin Q_p \land a \notin Q_q$ – A is QR for the former case, but not the latter case
- it is widely believed that determining QR modulo n is equivalent to factoring n, no proof is known
 - without factoring, one can guess correctly with prob. ½ for those with Jacobi symbol 1

The Rabin Encryption Scheme

- Motivation: The security of RSA encryption depends on the difficulty of computing the e'th root modulo n, i.e., given C, it is difficult to find M s.t. M^e=C mod n.
- It is not known that RSA encryption is as difficult as factoring.
- The Rabin encryption scheme is provably "secure" if factoring is hard
- Idea: rather than using an odd prime as e, uses 2
 - $f(x)=x^2 \mod n$
 - this is not a special case of RSA as this function is not 1-to-1.

The Rabin Encryption Scheme

- Public key: n
- Privacy key: p, q s.t. n=pq
- Encryption: compute c=m² mod n
- Decryption: compute the square roots of c.
 - how many are there?
- Fact:
 - when p=q=3 (mod 4), deterministic algorithms exist to compute the square roots
 - When p=3 (mod 4), $a^{(p+1)/4}$ is square root of a because $(a^{(p+1)/4})^2 = a^{(p+1)/2} = a^{(p-1)/2} a = a$
 - otherwise, efficient randomized algorithms exist to compute the square roots

Computing Square Roots is as hard as Factoring

- Given an algorithm A that can compute one square root of a number a modulo n,
- One can use A to factor n as follows
 - randomly pick x, compute $z = x^2 \mod n$
 - ask A to compute the square root of z, A returns y
 - if y=x or y=n-x, then try again, otherwise, compute gcd(x+y,n) gives us a prime factor of n
 - as A has no way to tell which x we've picked, with prob. ½, A returns a square root that allows us to factor n

Pragmatic Considerations for the Rabin Encryption Scheme

- Normally, one picks $p \equiv q \equiv 3 \pmod{4}$
- Textbook Rabin insecure, because it is deterministic
- Redundency is used to ensure that only one square root is a legitimate message
- Encryption very fast, only one exponentiation
- Decryption comparable to RSA decryption

The Goldwasser-Micali Probablistic Encryption Scheme

- First provably semantically secure public key encryption scheme, security based on the hardness of determining whether a number x is a QR modulo n, when the factoring of n is unknown and the Jacobi symbol $\left(\frac{x}{n}\right)$ is 1
- Encryption is bit by bit
- For each bit in the plaintext, the ciphertext is one number in Z_n*, expansion factor is 1024 when using 1024 moduli

The Goldwasser-Micali Probablistic Encryption Scheme

Key generation

 randomly choose two large equal-size prime number p and q, pick a random integer y such that

$$\left(\frac{y}{p}\right) = \left(\frac{y}{q}\right) = -1$$

- public key is (n=pq, y)
- private key is (p,q)
- Property of y: y is not QR, but has Jacobi symbol 1
- Encryption
 - to encrypt one bit b, pick a random x in Z_n^* , and let $C=x^2y^b$
 - that is, $C=x^2$ when b=0, and $C=x^2y$ when b=1

The Goldwasser-Micali Probablistic Encryption Scheme

Consider the Jacobi symbol of the ciphertext C

$$\left(\frac{x^2}{n}\right) = \left(\frac{x^2}{p}\right)\left(\frac{x^2}{q}\right) = 1 \bullet 1 = 1 \qquad \left(\frac{yx^2}{n}\right) = \left(\frac{yx^2}{p}\right)\left(\frac{yx^2}{q}\right) = -1 \bullet -1 = 1$$

- Consider whether the ciphertext C is QR modulo n
 C is QR iff. the plaintext bit b is 0
- Decryption:
 - knowing p and q s.t. n=pq, one can determine whether x is QR modulo n and thus retrieves the plaintext (how?)

Cost of Semantic Security in Public Key Encryption

- In order to have semantic security, some expansion is necessary
 - i.e., the ciphertext must be larger than its corresponding plaintext (why?)
 - the Goldwasser-Micali encryption scheme generate ciphertexts of size 1024m
 - suppose that all plaintexts have size m, what is the minimal size of ciphertexts to have an adequate level of security (e.g., takes 2^t to break the semantic security)?

Commutative Encryption

Definition: an encryption scheme is commutative if $E_{K1}[E_{K2}[M]] = E_{K2}[E_{K1}[M]]$

- Given an encryption scheme that is commutative, then $D_{K1}[D_{K2}[E_{K1}[E_{K2}[M]] = M$
- That is, if message is encrypted twice, the order does not matter.
- Most symmetric encryption scheme (such as DES and AES) are not commutative

Examples of Commutative Encryption Schemes

- Private key: Pohlig-Hellman Exponentiation Cipher with the same modulus p
 - encryption key is e, decryption key is d, where ed≡1 (mod (p-1))
 - $E_{e1}[M] = M^{e1} \mod p$ and $D_{d1}[C] = C^{d1} \mod p$
 - $E_{e_1}[E_{e_2}[M]] = M^{e_1e_2} = E_{e_1}[E_{e_2}[M]] \pmod{p}$

The SRA Mental Poker Protocol

- How do two parties play poker without a trusted third party?
 - Need to deal each one a hand of card, and after placing bet, be able to show hand.
 - Setup: Alice and Bob agree on using $M_1, M_2, ..., M_{52}$ to denote the 52 cards.
- Any ideas?

The SRA Mental Poker Protocol

- Alice encrypts M₁, M₂, ..., M₅₂ using her key, then randomly permute them and send the ciphertexts to Bob
- Bob picks 5 ciphertexts as Alice's hand and sends them to Alice
- Alice decrypts them to get his hand
- Bob picks 5 other ciphertexts as his hand, encrypts them using his key, and sends them to Alice
- Alice decrypts the 5 ciphertexts and sends to Bob
- Bob decrypts what Alice sends and gets his hand
- Both Alice and Bob reveals their key pairs to the other party and verify that the other party was not cheating. (Why need this step?)

Homomorphic Encryption

- Encryptions that allow computations on the ciphertexts
 - $E_{k}[m_{1}] \bullet E_{k}[m_{2}] = E_{k}[m_{1}^{\circ}m_{2}]$
- Applications
 - E-voting: everyone encrypts votes as 1 or 0, aggregate all ciphertexts before decrypting; no individual vote is revealed.
 - Requires additive homomorphic encryption: ° is +
 - Secure cloud computing.
 - Requires full homomorphic encryption, i.e., homomorphic properties for both + and ×

Homomorphic Properties of Some Encryption Schemes

- Multiplicative homomorphic encryption
 - Unpadded RSA: $m_1^e \times m_2^e = (m_1 \times m_2)^e$
 - El Gamal: Given public key (g, h=g^a), ciphertexts (g^{r1},h^{r1}m₁) and (g^{r2},h^{r2}m₂), multiple both components (g^{r1+r2},h^{r1+r2}m₁m₂)
- Additive homomorphic encryption schemes
 - Paillier cryptosystem (will explore in HW problem)
- Fully homomorphic encryption also exist
 - Significantly slower than other PK encryption

Coming Attractions ...

- Digital Signatures
- Reading: Katz & Lindell: Chapter 12.1 to 12.5

