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Outline and Readings 

• Outline 
• Quadratic Residue 

• Rabin encryption 

• Goldwasser-Micali 

• Commutative encryption 

• Homomorphic encryption 

 

• Readings: 
• Katz and Lindell: Chapter 11 
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Review: Quadratic Residues Modulo A 

Prime 

• Definition: a is a quadratic residue modulo p if it has a 

square root, i.e.,  b Zp
*  such that  b2  a mod p,  

– We write this as a  QRp 

• Exactly half of elements in Zp
* are in QRp 

– let g be generator, a=gj is a quadratic residue iff. j is even. 

• Each QR modulo p has two square roots in Zp
*  

• Legendre symbol indicates QR  
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Quadratic Residues Modulo a 

Composite n 

Definition: a is a quadratic residue modulo n 
(aQRn) if   b Zn

*  such that  b2  a mod n, 
otherwise when a0, a is a quadratic nonresidue 

Fact: aQRn, where n=pq, iff. aQRp and aQRq 

• The “only if” direction: b2  a mod n  , then b2  a mod p 
and b2  a mod q 

• The “if” direction: If b2  a mod p and c2  a mod q, then 
the four solutions to the four equation sets 

1. x  b mod p and x  c mod q 

2. x  b mod p and x  -c mod q 

3. x  -b mod p and x  c mod q 

4. x  -b mod p and x  -c mod q 

 satisfies x2  a mod n 
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For example 

• Fact: if n=pq, then x21 (mod n) has four solutions that 

are <n.    

– x21 (mod n) if and only if     

  both x21 (mod p) and x21 (mod q) 

– Two trivial solutions: 1 and n-1 

• 1 is solution to x  1 (mod p) and x  1 (mod q) 

• n-1 is solution to x  -1 (mod p) and x  -1 (mod q) 

– Two other solutions 

• solution to x  1 (mod p) and x  -1 (mod q) 

• solution to x  -1 (mod p) and x  1 (mod q) 

– E.g., n=3×5=15, then x21 (mod 15) has the following solutions: 

1, 4, 11, 14 
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Quadratic Residues Modulo a 

Composite 

• |QRn| = |QRp|  |QRq| = (p-1)(q-1)/4 

•      = 3(p-1)(q-1)/4 

• Jacobi symbol does not tell whether a number a is a QR 

 

 

• when it is -1, then either aQp aQq  or  aQp aQq, 
then a is not QR 

• when it is 1, then either aQp aQq  or  aQp aQq 

– A is QR for the former case, but not the latter case 

• it is widely believed that determining QR modulo n is 
equivalent to factoring n, no proof is known 
– without factoring, one can guess correctly with prob. ½ for those 

with Jacobi symbol 1 

n
QR
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Integers in Zn* 

x Qp 

x Qq 

QR modulo n 

x  Qp 

x Qq 

x Qp 

x Qq 

x  Qp 

x Qq 

Jacobi symbol is -1 Jacobi symbol is 1 
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The Rabin Encryption Scheme 

• Motivation: The security of RSA encryption depends on 

the difficulty of computing the e’th root modulo n, i.e., 

given C, it is difficult to find M s.t. Me=C mod n. 

• It is not known that RSA encryption is as difficult as 

factoring. 

• The Rabin encryption scheme is provably “secure” if 

factoring is hard 

• Idea: rather than using an odd prime as e, uses 2 

– f(x)=x2 mod n 

– this is not a special case of RSA as this function is not 1-to-1. 
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The Rabin Encryption Scheme 

• Public key: n 

• Privacy key: p, q s.t. n=pq 

• Encryption: compute c=m2 mod n 

• Decryption: compute the square roots of c. 

– how many are there? 

• Fact:  

– when pq3 (mod 4), deterministic algorithms exist to compute 

the square roots 

• When p3 (mod 4), a(p+1)/4 is square root of a because  

 (a(p+1)/4)2 = a(p+1)/2 = a(p-1)/2 a = a 

– otherwise, efficient randomized algorithms exist to compute the 

square roots 
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Computing Square Roots is as hard as 

Factoring 

• Given an algorithm A that can compute one 
square root of a number a modulo n, 

 

• One can use A to factor n as follows 
– randomly pick x, compute z = x2 mod n 

– ask A to compute the square root of z, A returns y 

– if y=x or y=n–x, then try again, otherwise, compute 
gcd(x+y,n) gives us a prime factor of n 

– as A has no way to tell which x we’ve picked, with 
prob. ½, A returns a square root that allows us to 
factor n 
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Pragmatic Considerations for the Rabin 

Encryption Scheme 

• Normally, one picks pq3 (mod 4) 

• Textbook Rabin insecure, because it is 

deterministic 

• Redundency is used to ensure that only one 

square root is a legitimate message 

• Encryption very fast, only one exponentiation 

• Decryption comparable to RSA decryption 
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The Goldwasser-Micali Probablistic 

Encryption Scheme 

• First provably semantically secure public key encryption 

scheme, security based on the hardness of determining 

whether a number x is a QR modulo n, when the 

factoring of n is unknown and the Jacobi symbol       is 1 

 

• Encryption is bit by bit 

• For each bit in the plaintext, the ciphertext is one 

number in Zn*, expansion factor is 1024 when using 

1024 moduli 
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The Goldwasser-Micali Probablistic 

Encryption Scheme 

• Key generation 

– randomly choose two large equal-size prime number p and q, 

pick a random integer y such that  

 

 

 

– public key is (n=pq, y)  

– private key is (p,q) 

– Property of y:  y is not QR, but has Jacobi symbol 1  

• Encryption 

– to encrypt one bit b, pick a random x in Zn*, and let C=x2yb
  

– that is, C=x2 when b=0, and C=x2y when b=1  
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The Goldwasser-Micali Probablistic 

Encryption Scheme 

• Consider the Jacobi symbol of the ciphertext C 

 

 

 

• Consider whether the ciphertext C is QR modulo n 

– C is QR iff. the plaintext bit b is 0 

• Decryption: 

– knowing p and q s.t. n=pq, one can determine whether x is QR 

modulo n and thus retrieves the plaintext (how?) 
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Cost of Semantic Security in Public 

Key Encryption 

• In order to have semantic security, some 

expansion is necessary 

– i.e., the ciphertext must be larger than its 

corresponding plaintext (why?) 

– the Goldwasser-Micali encryption scheme generate 

ciphertexts of size 1024m 

– suppose that all plaintexts have size m, what is the 

minimal size of ciphertexts to have an adequate level 

of security (e.g., takes 2t to break the semantic 

security)? 
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Commutative Encryption 

Definition: an encryption scheme is commutative if 

EK1[EK2[M]] = EK2[EK1[M]]  

 

• Given an encryption scheme that is commutative, then 

DK1[DK2[EK1[EK2[M]] = M 

 

• That is, if message is encrypted twice, the order does not 

matter. 

 

• Most symmetric encryption scheme (such as DES and 

AES) are not commutative 
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Examples of Commutative 

Encryption Schemes 

• Private key: Pohlig-Hellman Exponentiation Cipher with 

the same modulus p 

– encryption key is e, decryption key is d, where ed1 

(mod (p-1)) 

– Ee1[M] = Me1 mod p and Dd1[C]= Cd1 mod p 

– Ee1[Ee2[M]] = Me1e2 = Ee1[Ee2[M]] (mod p) 
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The SRA Mental Poker Protocol 

• How do two parties play poker without a trusted 

third party? 

– Need to deal each one a hand of card, and after placing 

bet, be able to show hand. 

– Setup: Alice and Bob agree on using M1, M2, …, M52 to 

denote the 52 cards. 

 

• Any ideas? 
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The SRA Mental Poker Protocol 

• Alice encrypts M1, M2, …, M52 using her key, then randomly 

permute them and send the ciphertexts to Bob 

• Bob picks 5 ciphertexts as Alice’s hand and sends them to Alice 

• Alice decrypts them to get his hand 

• Bob picks 5 other ciphertexts as his hand, encrypts them using 

his key, and sends them to Alice 

• Alice decrypts the 5 ciphertexts and sends to Bob 

• Bob decrypts what Alice sends and gets his hand 

• Both Alice and Bob reveals their key pairs to the other party and 

verify that the other party was not cheating.  (Why need this 

step?) 
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Homomorphic Encryption 

• Encryptions that allow computations on the 

ciphertexts 

– Ek[m1] Ek[m2] = Ek[m1m2] 

• Applications 

– E-voting: everyone encrypts votes as 1 or 0, 

aggregate all ciphertexts before decrypting; no 

individual vote is revealed. 

• Requires additive homomorphic encryption:  is + 

– Secure cloud computing.  

• Requires full homomorphic encryption, i.e., 

homomorphic properties for both + and  
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Homomorphic Properties of Some 

Encryption Schemes 

• Multiplicative homomorphic encryption 

– Unpadded RSA:  m1
em2

e = (m1m2)
e 

– El Gamal: Given public key (g, h=ga), ciphertexts 

(gr1,hr1m1) and (gr2,hr2m2), multiple both components 

(gr1+r2,hr1+r2m1m2) 

• Additive homomorphic encryption schemes 

– Paillier cryptosystem (will explore in HW problem) 

• Fully homomorphic encryption also exist 

– Significantly slower than other PK encryption 
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Coming Attractions … 

• Digital Signatures 

 

• Reading: Katz & Lindell: Chapter 

12.1 to 12.5 
 


