Cryptography
CS 555

Topic 20: Other Public Key Encryption Schemes
Outline and Readings

• Outline
 • Quadratic Residue
 • Rabin encryption
 • Goldwasser-Micali
 • Commutative encryption
 • Homomorphic encryption

• Readings:
 • Katz and Lindell: Chapter 11
Review: Quadratic Residues Modulo A Prime

- Definition: a is a quadratic residue modulo p if it has a square root, i.e., \(\exists b \in \mathbb{Z}_p^* \) such that \(b^2 \equiv a \mod p \),
 - We write this as \(a \in \text{QR}_p \)
- Exactly half of elements in \(\mathbb{Z}_p^* \) are in \(\text{QR}_p \)
 - Let \(g \) be generator, \(a=g^j \) is a quadratic residue iff. \(j \) is even.
- Each QR modulo p has two square roots in \(\mathbb{Z}_p^* \)
- Legendre symbol indicates QR

\[
\left(\frac{a}{p} \right) = \begin{cases}
0, & \text{if } p \mid a \\
1, & \text{if } a \in \text{QR}_p \\
-1, & \text{if } a \in \overline{\text{QR}}_p
\end{cases}
\]

\[
\left(\frac{a}{p} \right) = a^{\frac{p-1}{2}} \mod p
\]
Quadratic Residues Modulo a Composite n

Definition: a is a quadratic residue modulo n \((a \in QR_n)\) if \(\exists b \in Z_n^*\) such that \(b^2 \equiv a \mod n\), otherwise when \(a \neq 0\), a is a quadratic nonresidue.

Fact: \(a \in QR_n\), where \(n=pq\), iff. \(a \in QR_p\) and \(a \in QR_q\)

- The “only if” direction: \(b^2 \equiv a \mod n\), then \(b^2 \equiv a \mod p\) and \(b^2 \equiv a \mod q\)
- The “if” direction: If \(b^2 \equiv a \mod p\) and \(c^2 \equiv a \mod q\), then the four solutions to the four equation sets:
 1. \(x \equiv b \mod p\) and \(x \equiv c \mod q\)
 2. \(x \equiv b \mod p\) and \(x \equiv -c \mod q\)
 3. \(x \equiv -b \mod p\) and \(x \equiv c \mod q\)
 4. \(x \equiv -b \mod p\) and \(x \equiv -c \mod q\)

satisfies \(x^2 \equiv a \mod n\)
For example

- **Fact**: if $n=pq$, then $x^2 \equiv 1 \pmod{n}$ has four solutions that are $<n$.
 - $x^2 \equiv 1 \pmod{n}$ if and only if both $x^2 \equiv 1 \pmod{p}$ and $x^2 \equiv 1 \pmod{q}$
 - Two trivial solutions: 1 and $n-1$
 - 1 is solution to $x \equiv 1 \pmod{p}$ and $x \equiv 1 \pmod{q}$
 - $n-1$ is solution to $x \equiv -1 \pmod{p}$ and $x \equiv -1 \pmod{q}$
 - Two other solutions
 - solution to $x \equiv 1 \pmod{p}$ and $x \equiv -1 \pmod{q}$
 - solution to $x \equiv -1 \pmod{p}$ and $x \equiv 1 \pmod{q}$
 - E.g., $n=3 \times 5=15$, then $x^2 \equiv 1 \pmod{15}$ has the following solutions: 1, 4, 11, 14
Quadratic Residues Modulo a Composite

- \(|QR_n| = |QR_p| \cdot |QR_q| = (p-1)(q-1)/4\)
- \(|QR_n| \neq 3(p-1)(q-1)/4\)
- Jacobi symbol does not tell whether a number \(a\) is a QR
 \(\left(\frac{a}{n}\right) = \left(\frac{a}{p}\right) \left(\frac{a}{q}\right)\)
- when it is -1, then either \(a \in Q_p \land a \notin Q_q\) or \(a \notin Q_p \land a \in Q_q\), then \(a\) is not QR
- when it is 1, then either \(a \in Q_p \land a \in Q_q\) or \(a \notin Q_p \land a \notin Q_q\)
 - \(A\) is QR for the former case, but not the latter case
- it is widely believed that determining QR modulo \(n\) is equivalent to factoring \(n\), no proof is known
 - without factoring, one can guess correctly with prob. \(1/2\) for those with Jacobi symbol 1
Integers in \mathbb{Z}_n^*

QR modulo n

- $x \in \mathbb{Q}_p$
- $x \in \mathbb{Q}_q$

- $x \in \mathbb{Q}_p$
- $x \notin \mathbb{Q}_q$

- $x \notin \mathbb{Q}_p$
- $x \notin \mathbb{Q}_q$

- $x \notin \mathbb{Q}_p$
- $x \in \mathbb{Q}_q$

Jacobi symbol is 1

Jacobi symbol is -1
The Rabin Encryption Scheme

- Motivation: The security of RSA encryption depends on the difficulty of computing the e’th root modulo n, i.e., given C, it is difficult to find M s.t. \(M^e = C \mod n \).
- It is not known that RSA encryption is as difficult as factoring.
- The Rabin encryption scheme is provably “secure” if factoring is hard.
- Idea: rather than using an odd prime as e, uses 2
 - \(f(x) = x^2 \mod n \)
 - this is not a special case of RSA as this function is not 1-to-1.
The Rabin Encryption Scheme

- Public key: n
- Privacy key: p, q s.t. n=pq
- Encryption: compute c=m^2 mod n
- Decryption: compute the square roots of c.
 - how many are there?

Fact:
 - when p≡q≡3 (mod 4), deterministic algorithms exist to compute the square roots
 - When p≡3 (mod 4), a^{(p+1)/4} is square root of a because
 \[(a^{(p+1)/4})^2 = a^{(p+1)/2} = a^{(p-1)/2} \times a = a\]
 - otherwise, efficient randomized algorithms exist to compute the square roots
Computing Square Roots is as hard as Factoring

• Given an algorithm A that can compute one square root of a number a modulo n,

• One can use A to factor n as follows
 – randomly pick x, compute $z = x^2 \mod n$
 – ask A to compute the square root of z, A returns y
 – if $y = x$ or $y = n - x$, then try again, otherwise, compute $\gcd(x + y, n)$ gives us a prime factor of n
 – as A has no way to tell which x we’ve picked, with prob. $\frac{1}{2}$, A returns a square root that allows us to factor n
Pragmatic Considerations for the Rabin Encryption Scheme

- Normally, one picks $p \equiv q \equiv 3 \pmod{4}$
- Textbook Rabin insecure, because it is deterministic
- Redundency is used to ensure that only one square root is a legitimate message
- Encryption very fast, only one exponentiation
- Decryption comparable to RSA decryption
The Goldwasser-Micali Probablistic Encryption Scheme

- First provably semantically secure public key encryption scheme, security based on the hardness of determining whether a number x is a QR modulo n, when the factoring of n is unknown and the Jacobi symbol $\left(\frac{x}{n} \right)$ is 1.

- Encryption is bit by bit.
- For each bit in the plaintext, the ciphertext is one number in \mathbb{Z}_n^*, expansion factor is 1024 when using 1024 moduli.
The Goldwasser-Micali Probablistic Encryption Scheme

• Key generation
 – randomly choose two large equal-size prime number p and q, pick a random integer y such that
 \[
 \left(\frac{y}{p} \right) = \left(\frac{y}{q} \right) = -1
 \]
 – public key is (n=pq, y)
 – private key is (p,q)
 – Property of y: y is not QR, but has Jacobi symbol 1

• Encryption
 – to encrypt one bit b, pick a random x in Z_{n}^{*}, and let C=x^{2}y^{b}
 – that is, C=x^{2} when b=0, and C=x^{2}y when b=1
The Goldwasser-Micali Probabilistic Encryption Scheme

- Consider the Jacobi symbol of the ciphertext C
 \[
 \left(\frac{x^2}{n} \right) = \left(\frac{x^2}{p} \right) \left(\frac{x^2}{q} \right) = 1 \cdot 1 = 1
 \]
 \[
 \left(\frac{yx^2}{n} \right) = \left(\frac{yx^2}{p} \right) \left(\frac{yx^2}{q} \right) = -1 \cdot -1 = 1
 \]

- Consider whether the ciphertext C is QR modulo n
 - C is QR iff. the plaintext bit b is 0

- Decryption:
 - knowing p and q s.t. n=pq, one can determine whether x is QR modulo n and thus retrieves the plaintext (how?)
Cost of Semantic Security in Public Key Encryption

• In order to have semantic security, some expansion is necessary
 – i.e., the ciphertext must be larger than its corresponding plaintext (why?)
 – the Goldwasser-Micali encryption scheme generate ciphertexts of size 1024m
 – suppose that all plaintexts have size m, what is the minimal size of ciphertexts to have an adequate level of security (e.g., takes 2^t to break the semantic security)?
Commutative Encryption

Definition: an encryption scheme is commutative if
\[E_{K_1}[E_{K_2}[M]] = E_{K_2}[E_{K_1}[M]] \]

- Given an encryption scheme that is commutative, then
 \[D_{K_1}[D_{K_2}[E_{K_1}[E_{K_2}[M]]] = M \]

- That is, if message is encrypted twice, the order does not matter.

- Most symmetric encryption scheme (such as DES and AES) are not commutative
Examples of Commutative Encryption Schemes

- Private key: Pohlig-Hellman Exponentiation Cipher with the same modulus \(p \)
 - encryption key is \(e \), decryption key is \(d \), where \(ed \equiv 1 \pmod{(p-1)} \)
 - \(E_{e_1}[M] = M^{e_1} \mod p \) and \(D_{d_1}[C] = C^{d_1} \mod p \)
 - \(E_{e_1}[E_{e_2}[M]] = M^{e_1 e_2} = E_{e_1}[E_{e_2}[M]] \pmod{p} \)
The SRA Mental Poker Protocol

• How do two parties play poker without a trusted third party?
 – Need to deal each one a hand of card, and after placing bet, be able to show hand.
 – Setup: Alice and Bob agree on using M_1, M_2, \ldots, M_{52} to denote the 52 cards.

• Any ideas?
The SRA Mental Poker Protocol

- Alice encrypts M_1, M_2, \ldots, M_{52} using her key, then randomly permute them and send the ciphertexts to Bob
- Bob picks 5 ciphertexts as Alice’s hand and sends them to Alice
- Alice decrypts them to get his hand
- Bob picks 5 other ciphertexts as his hand, encrypts them using his key, and sends them to Alice
- Alice decrypts the 5 ciphertexts and sends to Bob
- Bob decrypts what Alice sends and gets his hand
- Both Alice and Bob reveals their key pairs to the other party and verify that the other party was not cheating. *(Why need this step?)*
Homomorphic Encryption

• Encryptions that allow computations on the ciphertexts
 – \(E_k[m_1] \cdot E_k[m_2] = E_k[m_1 \circ m_2] \)

• Applications
 – E-voting: everyone encrypts votes as 1 or 0, aggregate all ciphertexts before decrypting; no individual vote is revealed.
 • Requires additive homomorphic encryption: \(\circ \) is +
 – Secure cloud computing.
 • Requires full homomorphic encryption, i.e., homomorphic properties for both + and \(\times \)
Homomorphic Properties of Some Encryption Schemes

- Multiplicative homomorphic encryption
 - Unpadded RSA: \(m_1^e \times m_2^e = (m_1 \times m_2)^e \)
 - El Gamal: Given public key \((g, h=g^a)\), ciphertexts \((g^{r_1}, h^{r_1}m_1)\) and \((g^{r_2}, h^{r_2}m_2)\), multiple both components \((g^{r_1+r_2}, h^{r_1+r_2}m_1m_2)\)

- Additive homomorphic encryption schemes
 - Paillier cryptosystem (will explore in HW problem)

- Fully homomorphic encryption also exist
 - Significantly slower than other PK encryption
Coming Attractions …

• Digital Signatures

• Reading: Katz & Lindell: Chapter 12.1 to 12.5