Cryptography CS 555

Topic 19: Formalization of Public Key Encrpytion

Outline and Readings

- Outline
 - CPA Security for public key encryption
 - Hybrid encryption
 - Padded RSA
 - El Gamal Encryption
 - CCA Security for public key encryption

Katz and Lindell: Section 10.2, 10.3, 10.4, 10.5, 10.6

IND-CPA Security

- For public key encryption, Ciphertext Indistinguishability against Chosen Plaintext Attacker is equivalent to Ciphertext Indistinguishability against Eavesdroppers
 - Because one gets the Encryption Oracle for free in public key encryption schemes

Hybrid Encryption

- Construction 10.12. Given a CPA-secure publickey encryption Enc_{pk}, and a private key encryption scheme E_k.
 - To encrypt a message *m*, randomly choose $k \leftarrow \{0,1\}^n$,
 - Cipheretext is $\langle Enc_{pk}(k), E_k(m) \rangle$
 - A new k is chosen for each encryption; encryption is randomized

Hybrid Encryption is Secure

- Theorem 10.13: If Enc_{pk} is CPA-secure, and E_k is secure against eavesdropper, then Construction 10.12 is CPA-secure.
 - Why E_k only needs to be secure against eavesdropper, and does not need to be CPA-secure?
- Proof idea. Need to show the following are IND a= $\langle pk, Enc_{pk}(k), E_k(m_0) \rangle$ d= $\langle pk, Enc_{pk}(k), E_k(m_1) \rangle$
- Consider

 $b = \langle pk, Enc_{pk}(O^n), E_k(m_0) \rangle \quad c = \langle pk, Enc_{pk}(O^n), E_k(m_1) \rangle$

- (a,b), (c,d) IND because Enc_{pk} is secure; (b,c) IND because E_k is secure.
- This proof technique is known as Hybrid argument. CS555 Topic 19

Simply Padded RSA

- Construction 10.18. To encrypt *m* using RSA, randomly chooses *r* (so that *r*||*m* is of length ||N||-1), compute ciphertext
 c := [(*r*||*m*)^e mod N]
- When m is really short (O(log ||N||)), this construction can be prove secure assume that the RSA problem is hard.
 - That is, computing O(log ||N||) least significant bits of the e'th root is as hard as computing the e'th root
 - When r is not that long, there exists no proof of the security of the construction under the assumption that the RSA problem is hard.

RSA-OAEP

- Optimal Asymmetric Encryption Padding (OAEP)
 - Roughly, to encrypt m, chooses random r, encode m as m' = [X = m ⊕ H₁(r), Y= r ⊕ H₂(X)] where H₁ and H₂ are cryptographic hash functions, then encrypt it as (m') ^e mod n
 - To decrypt m'=[X,Y], compute $r = Y \oplus H_2(X)$, and $m = X \oplus H_1(r)$
- Proven secure under the RSA assumption when H_1 and H_2 are assumed to be random oracles.
 - Unless both X and Y are fully recovered, cannot obtain r, without r, cannot obtain any information of m.
 - We will not cover Random Oracle Model in this course. See Chapter 13 if interested.

ElGamal Encryption

- Public key <p, g, h=g^a mod p>
- Private key is a
- To encrypt m: chooses random b, computes C=[g^b mod p, h^b m mod p].
 - Idea: for each m, sender and receiver establish a shared secret h^b = g^{ab} via the DH protocol. The value g^{ab} hides the message m by multiplying it.
- To decrypt C=[c₁,c₂], computes [c₂ / (c₁^a mod p) mod p].

El Gamal Encryption is CPAsecure under DDH Assumption

Decision Diffie Hellman (DDH) Problem: Given (g,g^x,g^y,g^z) sampled either from (g, g^a,g^b,g^{ab}) or from (g, g^a,g^b,g^c), tell which is the case

– a,b,c uniformly randomly chosen from [1,p-1]

- Given adversary A for EI Gamal encryption, construct adversary for DDH problem as follows:
 - Take (g,g^x,g^y,g^z) as input, use (g, g^y) as public key, when A outputs (m₀,m₁), encrypt m_b as (g^x, g^zm_b) and send to A. If A wins, outputs sampled from (g, g^a,g^b,g^{ab})
 - When (g,g^x,g^y,g^z) sampled from (g, g^a,g^b,g^c) , $g^z m_b$ has uniform distribution and independent from g^x,g^y

Chosen Ciphertext Security

- Most public key encryption schemes we have examined are insecure against chosen ciphertext attacks
 - Textbook RSA: Given a RSA ciphertext c=m^e mod N, construct c'=c2^e mod n, after obtaining plaintext m', compute m' · 2⁻¹ mod n
 - El Gamal: Given C=[g^b mod p, h^b m mod p], how to change the ciphertext?
 - What about Simply Padded RSA: c=(r||m)^e mod N?
 - Insecure.
 - What about RSA-OAEP?
 - Secure, why?

Coming Attractions ...

- Other Public Key Encryption Schemes
- Reading: Katz & Lindell: Chapter 11

