
CS555 Topic 18 1

Cryptography

CS 555

Topic 18: RSA Implementation and Security

CS555 Topic 18 2

Outline and Readings

• Outline
• RSA implementation issues

• Factoring large numbers

• Knowing (e,d) enables factoring

• Prime testing

• Readings:
• Katz and Lindell: Section 7.2,

Appendix B.2

Topic 18 3

Why does RSA work?

• Need to show that (Me)d (mod n) = M, n = pq

• We know that when MZpq*, i.e., when gcd(M, n) = 1,
then Med  M (mod n)

• What if gcd(M, n)  1?
– Assume, wlog, that gcd(M, n) = p

– ed  1 (mod (n)), so ed = k(n) + 1, for some integer k.

– Med mod p = (M mod p)ed mod p = 0
 so Med  M mod p

– Med mod q = (Mk*(n) mod q) (M mod q) = M mod q
 so Med  M mod q

– As p and q are distinct primes, it follows from the Chinese
Remainder Theorem that Med  M mod pq

• What is the probability that when one chooses M Zpq,
gcd(M, n)  1?

CS555

Topic 18 4

Square and Multiply Algorithm for

Exponentiation

• Computing (x)c mod n
– Example: suppose that c=53=110101

– x53=((x13)2)2·x=(((x3)2)2·x)2)2·x =(((x2·x)2)2·x)2)2·x mod n

Alg: Square-and-multiply (x, n, c = ck-1 ck-2 … c1 c0)
 z=1

 for i  k-1 downto 0 {

 z  z2 mod n

 if ci = 1 then z  (z × x) mod n

 }

 return z

CS555

Topic 18 5

Efficiency of computation modulo n

• Suppose that n is a k-bit number, and 0 x,y  n

– computing (x+y) mod n takes time O(k)

– computing (x-y) mod n takes time O(k)

– computing (xy) mod n takes time O(k2)

– computing (x-1) mod n takes time O(k3)

– computing (x)c mod n takes time O((log c) k2)

CS555

Topic 18 6

RSA Implementation

n, p, q
• The security of RSA depends on how large n is,

which is often measured in the number of bits for n.

• Currently, 1024 bits for n is considered similar to 80-
bit security, and is not recommended for serious
security

• p and q should have the same bit length, so for 2048
bits RSA, p and q should be about 1024 bits.

• p q should not be small
– Otherwise, factoring pq is easy

CS555

Topic 18 7

RSA Implementation

• Select p and q prime

numbers

• In general, select

numbers, then test for

primality

• Many implementations use

the Rabin-Miller test,

(probabilistic test)

CS555

Topic 18 8

RSA Implementation

e

• e is usually chosen to be
3 or 216 + 1 = 65537

• In order to speed up the
encryption
– the smaller the number of

1 bits, the better
– why?

CS555

Topic 18 9

Pohlig-Hellman Exponentiation Cipher

• A symmetric key exponentiation cipher

– encryption key (e,p), where p is a prime

– decryption key (d,p), where ed1 (mod (p-1))

– to encrypt M, compute Me mod p

– to decrypt C, compute Cd mod p

• Why is this not a public key cipher?

• What makes RSA different?

CS555

Topic 18 10

Factoring Large Numbers

• One idea many factoring algorithms use:

– Suppose one find x2y2 (mod n) such that xy (mod n)

and x-y (mod n).

– Then n | (x-y)(x+y).

– As neither (x-y) or (x+y) is divisible by n; gcd(x-y,n) is

a non-trivial factor of n

– Given one factor, easily compute the other

CS555

Topic 18 11

More Details on Factoring

• Fact: if n=pq, then x21 (mod n) has four solutions that

are <n.

– x21 (mod n) if and only if

 both x21 (mod p) and x21 (mod q)

– Two trivial solutions: 1 and n-1

• 1 is solution to x  1 (mod p) and x  1 (mod q)

• n-1 is solution to x  -1 (mod p) and x  -1 (mod q)

– Two other solutions

• solution to x  1 (mod p) and x  -1 (mod q)

• solution to x  -1 (mod p) and x  1 (mod q)

– E.g., n=3×5=15, then x21 (mod 15) has the following solutions:

1, 4, 11, 14

CS555

Topic 18 12

An Example

• Knowing a nontrivial solution to x21 (mod n)

– compute gcd(x+1,n) and gcd(x-1,n)

• E.g., 4 and 11 are solution to x21 (mod 15)

– gcd(4+1,15) = 5

– gcd(4-1,15) = 3

– gcd(11+1,15) = 3

– gcd(11-1, 15) = 5

CS555

Topic 18 13

Time complexity of factoring

• quadratic sieve:
– O(e(1+o(1))sqrt(ln n ln ln n)) for n around 21024, O(e68)

• elliptic curve factoring algorithm
– O(e(1+o(1))sqrt(2 ln p ln ln p)), where p is the smallest prime factor

– for n=pq and p,q around 2512, for n around 21024 O (e65)

• number field sieve
– O(e(1.92+o(1)) (ln n)^1/3 (ln ln n)^2/3), for n around 21024 O (e60)

• 768-bit modulus was factored in 2009

• Extrapolating trends of factoring suggests that
– 1024-bit moduli will be factored by 2018

CS555

Topic 18 14

RSA Security

• RSA security depends on hardness of factoring

n=pq

– Knowing (n) enables factoring n

– Knowing (e,d) such that ed mod (n)=1 enables

factoring n

CS555

Topic 18 15

(n) implies factorization

• Knowing both n and (n), one knows

 n = pq

 (n) = (p-1)(q-1) = pq – p – q + 1

 = n – p – n/p + 1

 p(n) = np – p2 – n + p

 p2 – np + (n)p – p + n = 0

 p2 – (n – (n) + 1) p + n = 0

• There are two solutions of p in the above equation.

• Both p and q are solutions.

CS555

Topic 18 16

Factoring when knowing e and d

• Knowing ed such that ed  1 (mod (n))

 write ed – 1 = 2s r (r odd)

 choose w at random such that 1<w<n-1

 if w not relative prime to n then return gcd(w,n)

 (if gcd(w,n)=1, what value is (w2^s r mod n)?)

 compute wr, w2r, w4r, …, by successive

 squaring until find w2^t r  1 (mod n)

 Fails when wr 1 (mod n) or w2^t r -1 (mod n)

 Failure probability is less than ½ (Proof is complicated)

CS555

Topic 18 17

Example: Factoring n given (e,d)

• Input: n=2773, e=17, d=157

• ed-1=2668=22667 (r=667)

• Pick random w, compute wr mod n

– w=7, 7667=1 no good

– w=8, 8667=471, and 4712=1, so 471 is a nontrivial

square root of 1 mod 2773

– compute gcd(471+1, 2773)=59

– gcd(471-1, 2773)=47.

– 2773=5947

CS555

Topic 18 18

Summary of Math-based Attacks on

RSA

• Three possible approaches:

1.Factor n = pq

2.Determine (n)

3.Find the private key d directly

• All are equivalent

– finding out d implies factoring n

– if factoring is hard, so is finding out d

• Should never have different users share one common

modulus

CS555

Topic 18 19

The RSA Problem

• The RSA Problem: Given a positive integer n that

is a product of two distinct large primes p and q,

a positive integer e such that gcd(e, (p-1)(q-

1))=1, and an integer c, find an integer m such

that mec (mod n)

– widely believed that the RSA problem is

computationally equivalent to integer factorization;

however, no proof is known

• The security of RSA encryption’s scheme

depends on the hardness of the RSA problem.

CS555

Topic 18 20

Other Decryption Attacks on RSA

Small encryption exponent e
• When e=3, Alice sends the encryption of message m to

three people (public keys (e, n1), (e, n2), (e,n3))
– C1 = M3 mod n1, C2 = M3 mod n2, C3 = M3 mod n3,

• An attacker can compute a solution to the following
system

• The solution x modulo n1n2n3 must be M3

– (No modulus!), one can compute integer cubit root

• Countermeasure: padding required 

x  c1 mod n1

x  c2 mod n2

x  c3 mod n3

CS555

Topic 18 21

Other Attacks on RSA

Forward Search Attack

• If the message space is small, the attacker can
create a dictionary of encrypted messages
(public key known, encrypt all possible
messages and store them)

• When the attacker ‘sees’ a message on the
network, compares the encrypted

 messages, so he finds out what

 particular message was encrypted
Q uickTim e™ and a TI FF (Uncom pr essed) decom pr essor ar e needed t o see t his pict ur e.

CS555

Topic 18 22

Timing Attacks

• Timing Attacks on Implementations of Diffie-
Hellman, RSA, DSS, and Other Systems (1996),
Paul C. Kocher

• By measuring the time required to perform
decryption (exponentiation with the private key as
exponent), an attacker can figure out the private
key

• Possible countermeasures:
– use constant exponentiation time

– add random delays

– blind values used in calculations

CS555

Topic 18 23

Timing Attacks (cont.)

• Is it possible in practice? YES.

 OpenSSL Security Advisory [17 March 2003]

 Timing-based attacks on RSA keys

 ================================

 OpenSSL v0.9.7a and 0.9.6i vulnerability

 --

 Researchers have discovered a timing attack on RSA keys, to
which OpenSSL is generally vulnerable, unless RSA blinding has
been turned on.

CS555

Topic 18 24

Distribution of Prime Numbers

 Theorem (Gaps between primes)

 For every positive integer n, there are n or
more consecutive composite numbers.

 Proof Idea:

 The consective numbers
 (n+1)! + 2, (n+1)! + 3, …., (n+1)! + n+1

 are composite.

 (Why?)

CS555

Topic 18 25

Distribution of Prime Numbers

 Definition

 Given real number x, let (x) be the number of
prime numbers ≤ x.

 Theorem (prime numbers theorem)

 For a very large number x, the number of prime
numbers smaller than x is close to x/ln x.



lim
x

(x)

x /ln x
1

CS555

Topic 18 26

Generating large prime numbers

• Randomly generate a large odd number and

then test whether it is prime.

• How many random integers need to be tested

before finding a prime?

– the number of prime numbers  p is about N / ln p

– roughly every ln p integers has a prime

• for a 512 bit p, ln p = 355. on average, need to test

about 177=355/2 odd numbers

• Need to solve the Primality testing problem

– the decision problem to decide whether a number is a

prime

CS555

Topic 18 27

Naïve Method for Primality Testing

 Theorem

 Composite numbers have a divisor below their square root.

 Proof idea:

 n composite, so n = ab, 0 < a ≤ b < n, then a ≤ sqrt(n), otherwise

we obtain ab > n (contradiction).

 Algorithm 1

 for (i=2, i < sqrt(n) + 1); i++) {

 If i a divisor of n {

 n is composite

 }
 }

 n is prime

 Running time is O(sqrt(n)), which is exponential in the size of the

binary representation of n

CS555

Topic 18 28

More Efficient Algorithms for

Primality Testing

 Primality testing is easier than integer
factorization, and has a polynomial-time
algorithm.
 The Agrawal–Kayal–Saxena primality test was

discovered in 2002
 Improved version of the algorithm runs in

 O((ln x)6), less efficient than randomized
algorithms

 How can we tell if a number is prime or not
without factoring the number?

• The most efficient algorithms are randomized.

• Solovay-Strassen

• Rabin-Miler
CS555

Topic 18 29

Quadratic Residues Modulo A Prime

Definition

• a is a quadratic residue modulo p if  b Zp
* such

that b2  a mod p,

• otherwise when a0, a is a quadratic nonresidue

• is the set of all quadratic residues

• is the set of all quadratic nonresidues

• If p is prime there are (p-1)/2 quadratic residues in Zp
*,

that is |Qp| = (p-1)/2

– let g be generator of Zp
*, then a=gj is a quadratic residue iff. j

is even.


Qp



Qp

CS555

Topic 18 30

How Many Square Roots Does an

Element in Qp have?

• A element a in Qp has exactly two square roots

– a has at least two square roots

• if b2  a mod p, then (p-b)2  a mod p

– a has at most two square roots in Zp*

• if b2  a mod p and c2  a mod p, then b2 –c2  0 mod p

• then p | (b+c)(b-c), either b=c, or b+c=p

CS555

Topic 18 31

Legendre Symbol

• Let p be an odd prime and a an integer.
The Legendre symbol is defined



a

p











 0, if p | a

 1, if a  Qp

1, if a  Q p









CS555

Topic 18 32

Euler’s Criterion

Theorem: If a (p-1)/2  1 mod p, then a is a quadratic

residue (if  -1 then a is a quadratic nonresidue)

I.e., the Legendre symbol = a (p-1)/2 mod p

Proof. If a = y2, then a (p-1)/2 = y(p-1) = 1 (mod p)

 If a (p-1)/2=1, let a = gj, where g is a generator of the

group Zp*. Then gj (p-1)/2 = 1 (mod p). Since g is a

generator, (p-1) | j (p-1)/2, thus j must be even.

Therefore, a=gj is QR.










p

a

CS555

Topic 18 33

Jacobi Symbol

• Let n  3 be odd with prime factorization

• The Jacobi symbol is defined to be

• The Jacobi symbol is in {0,-1,1}, and can be

computed without factoring n or knowing

whether n is prime or not

ke

k

ee

p

a

p

a

p

a

n

a

































...

21

21

ke

k

ee
pppn ...21

21

CS555

Topic 18 34

Euler Pseudo-prime

• For any prime p, the Legendre symbol = a(p-1)/2 mod p

• For a composite n, if the Jacobi symbol = a(n-1)/2 mod n

then n is called an Euler pseudo-prime to the base a,

– i.e., a is a “pseudo” evidence that n is prime

• For any composite n, the number of “pseudo” evidences

that n is prime for at most half of the integers in Zn*










p

a










n

a

CS555

Topic 18 35

The Solovay-Strassen Algorithm

for Primality Testing

Solovay-Strassen(n)

 choose a random integer a s.t. 1an-1

 x

 if x=0 then return (“n is composite”) // gcd(x,n)1

 y  a(n-1)/2 mod n

 if (x=y) then return (“n is prime”)

 // either n is a prime, or a pseudo-prime

 else return (“n is composite”)

 // violates Euler’s criterion

If n is composite, it passes the test with at most ½ prob.
Use multiple tests before accepting n as prime.










n

a

CS555

Topic 18 36

Rabin-Miller Test

• Another efficient probabilistic algorithm for determining if a
given number n is prime.

– Write n-1 as 2km, with m odd.

– Choose a random integer a, 1 ≤ a ≤ n-1.

– b  am mod n

– if b=1 then return “n is prime”

– compute b, b2,b4,…,b2^(k-1), if we find -1, return “n is
prime”

– return “n is composite”

• A composite number pass the test with ¼ prob.

• When t tests are used with independent a, a composite
passes with (¼)t prob.

• The test is fast, used very often in practice.

CS555

Topic 18 37

Why Rabin-Miller Test Work

Claim: If the algorithm returns “n is composite”, then n is not

a prime.

Proof: if we choose a and returns composite on n, then
– am1, am-1, a2m  -1, a4m  -1, …, a2^{k-1}m  -1 (mod n)

– suppose, for the sake of contradiction, that n is prime,

– then an-1=a2^{k}m=1 (mod n)

– then there are two square roots modulo n, 1 and -1

– then a2^{k-1}m = a2^{k-2}m = a2m = am = 1 (contradiction!)

– so if n is prime, the algorithm will not return “composite”

CS555

CS555 Topic 18 38

Coming Attractions …

• Public Key Encryption

• Reading: Katz & Lindell: Chapter

10

