
CS555 Topic 18 1 

Cryptography 

CS 555 

Topic 18: RSA Implementation and Security 



CS555 Topic 18 2 

Outline and Readings 

• Outline 
• RSA implementation issues 

• Factoring large numbers 

• Knowing (e,d) enables factoring 

• Prime testing  

 

• Readings: 
• Katz and Lindell: Section 7.2, 

Appendix B.2 
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Why does RSA work?  

• Need to show that (Me)d (mod n) = M, n = pq 

• We know that when MZpq*, i.e., when gcd(M, n) = 1, 
then Med  M     (mod n) 

• What if gcd(M, n)  1? 
– Assume, wlog, that gcd(M, n) = p 

– ed  1 (mod (n)), so  ed = k(n) + 1, for some integer k. 

– Med mod p = (M mod p)ed mod p = 0      
 so Med  M mod p 

– Med mod q = (Mk*(n) mod q) (M mod q) = M mod q   
 so Med  M mod q 

– As p and q are distinct primes, it follows from the Chinese 
Remainder Theorem that Med  M mod pq 

• What is the probability that when one chooses M Zpq, 
gcd(M, n)  1? 
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Square and Multiply Algorithm for 

Exponentiation 

• Computing (x)c mod n  
– Example: suppose that c=53=110101 

– x53=((x13)2)2·x=(((x3)2)2·x)2)2·x =(((x2·x)2)2·x)2)2·x mod n 

 
Alg: Square-and-multiply (x, n, c = ck-1 ck-2 … c1 c0) 
  z=1 

  for i  k-1 downto 0 { 

   z  z2 mod n 

   if ci = 1 then z  (z × x) mod n 

  } 

  return z 
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Efficiency of computation modulo n 

• Suppose that n is a k-bit number, and 0 x,y  n 

– computing (x+y) mod n takes time O(k)  

– computing (x-y) mod n takes time O(k) 

– computing (xy) mod n takes time O(k2) 

– computing (x-1) mod n takes time O(k3) 

– computing (x)c mod n takes time O((log c) k2) 
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RSA Implementation  

n, p, q 
• The security of RSA depends on how large n is, 

which is often measured in the number of bits for n.  

• Currently, 1024 bits for n is considered similar to 80-
bit security, and is not recommended for serious 
security 

• p and q should have the same bit length, so for 2048 
bits RSA, p and q should be about 1024 bits. 

• p q should not be small 
– Otherwise, factoring pq is easy 
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RSA Implementation 

• Select p and q prime 

numbers 

• In general, select 

numbers, then test for 

primality 

• Many implementations use 

the Rabin-Miller test, 

(probabilistic test) 
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RSA Implementation  

e 

• e is usually chosen to be 
3 or 216 + 1 = 65537 

• In order to speed up the 
encryption 
– the smaller the number of 

1 bits, the better  
– why? 
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Pohlig-Hellman Exponentiation Cipher 

• A symmetric key exponentiation cipher 

– encryption key (e,p),  where p is a prime 

– decryption key (d,p),  where ed1 (mod (p-1)) 

– to encrypt M, compute Me mod p 

– to decrypt C, compute Cd mod p 

 

• Why is this not a public key cipher? 

• What makes RSA different? 
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Factoring Large Numbers 

• One idea many factoring algorithms use: 

– Suppose one find x2y2 (mod n) such that xy (mod n) 

and x-y (mod n).   

– Then  n | (x-y)(x+y).   

– As neither (x-y) or (x+y) is divisible by n; gcd(x-y,n) is 

a non-trivial factor of n 

– Given one factor, easily compute the other 
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More Details on Factoring 

• Fact: if n=pq, then x21 (mod n) has four solutions that 

are <n.    

– x21 (mod n) if and only if     

  both x21 (mod p) and x21 (mod q) 

– Two trivial solutions: 1 and n-1 

• 1 is solution to x  1 (mod p) and x  1 (mod q) 

• n-1 is solution to x  -1 (mod p) and x  -1 (mod q) 

– Two other solutions 

• solution to x  1 (mod p) and x  -1 (mod q) 

• solution to x  -1 (mod p) and x  1 (mod q) 

– E.g., n=3×5=15, then x21 (mod 15) has the following solutions: 

1, 4, 11, 14 
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An Example 

• Knowing a nontrivial solution to x21 (mod n) 

– compute gcd(x+1,n) and gcd(x-1,n) 

• E.g., 4 and 11 are solution to x21 (mod 15) 

– gcd(4+1,15) = 5 

– gcd(4-1,15) = 3 

– gcd(11+1,15) = 3 

– gcd(11-1, 15) = 5 
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Time complexity of factoring 

• quadratic sieve:  
– O(e(1+o(1))sqrt(ln n ln ln n))  for n around 21024, O(e68) 

• elliptic curve factoring algorithm 
– O(e(1+o(1))sqrt(2 ln p ln ln p)), where p is the smallest prime factor 

– for n=pq and p,q around 2512,  for n around 21024 O (e65) 

• number field sieve 
– O(e(1.92+o(1)) (ln n)^1/3 (ln ln n)^2/3),  for n around 21024 O (e60) 

• 768-bit modulus was factored in 2009 

• Extrapolating trends of factoring suggests that 
– 1024-bit moduli will be factored by 2018 
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RSA Security 

• RSA security depends on hardness of factoring 

n=pq 

– Knowing (n) enables factoring n 

– Knowing (e,d) such that ed mod (n)=1 enables 

factoring n 
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(n) implies factorization 

• Knowing both n and (n), one knows  

  n = pq 

  (n) = (p-1)(q-1) = pq – p – q + 1 

                 = n – p – n/p + 1 

  p(n) = np – p2 – n + p 

  p2 – np + (n)p – p + n = 0 

    p2 – (n – (n) + 1) p + n = 0 

• There are two solutions of p in the above equation. 

• Both p and q are solutions.  
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Factoring when knowing e and d 

• Knowing ed such that ed  1 (mod (n)) 

  write ed – 1 = 2s r (r odd) 

  choose w at random such that 1<w<n-1 

  if w not relative prime to n then return gcd(w,n) 

   (if gcd(w,n)=1, what value is (w2^s r mod n)?) 

  compute wr, w2r, w4r, …, by successive  

 squaring until find w2^t r  1 (mod n) 

 Fails when wr 1 (mod n)  or w2^t r -1 (mod n) 

 Failure probability is less than ½ (Proof is complicated) 
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Example: Factoring n given (e,d) 

• Input:  n=2773, e=17, d=157 

• ed-1=2668=22667  (r=667) 

• Pick random w, compute wr mod n 

– w=7,  7667=1  no good 

– w=8,  8667=471, and 4712=1, so 471 is a nontrivial 

square root of 1 mod 2773 

– compute gcd(471+1, 2773)=59 

– gcd(471-1, 2773)=47.   

– 2773=5947 
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Summary of Math-based Attacks on 

RSA 

• Three possible approaches:  

1.Factor n = pq 

2.Determine (n) 

3.Find the private key d directly 

• All are equivalent 

– finding out d implies factoring n 

– if factoring is hard, so is finding out d 

• Should never have different users share one common 

modulus  
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The RSA Problem 

• The RSA Problem: Given a positive integer n that 

is a product of two distinct large primes p and q, 

a positive integer e such that gcd(e, (p-1)(q-

1))=1, and an integer c, find an integer m such 

that mec (mod n) 

– widely believed that the RSA problem is 

computationally equivalent to integer factorization; 

however, no proof is known 

• The security of RSA encryption’s scheme 

depends on the hardness of the RSA problem. 
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Other Decryption Attacks on RSA 

Small encryption exponent e 
• When e=3, Alice sends the encryption of message m to 

three people (public keys (e, n1), (e, n2), (e,n3)) 
– C1 = M3 mod n1, C2 = M3 mod n2, C3 = M3 mod n3,  

• An attacker can compute a solution to the following 
system 

 
 

 
 

• The solution x modulo n1n2n3 must be M3 

– (No modulus!), one can compute integer cubit root 

• Countermeasure: padding required 

x  c1 mod n1

x  c2 mod n2

x  c3 mod n3
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Other Attacks on RSA 

Forward Search Attack 

• If the message space is small, the attacker can 
create a dictionary of encrypted messages 
(public key known, encrypt all possible 
messages and store them) 

• When the attacker ‘sees’ a message on the 
network, compares the encrypted  

    messages, so he finds out what  

    particular message was encrypted 
Q uickTim e™ and a TI FF ( Uncom pr essed)  decom pr essor  ar e needed t o see t his pict ur e.
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Timing Attacks 

• Timing Attacks on Implementations of Diffie-
Hellman, RSA, DSS, and Other Systems (1996), 
Paul C. Kocher 

• By measuring the time required to perform 
decryption (exponentiation with the private key as 
exponent), an attacker can figure out the private 
key 

• Possible countermeasures: 
– use constant exponentiation time 

– add random delays 

– blind values used in calculations 
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Timing Attacks (cont.) 

• Is it possible in practice? YES. 
        

      OpenSSL Security Advisory [17 March 2003] 

      Timing-based attacks on RSA keys 

       ================================ 

       OpenSSL v0.9.7a and 0.9.6i vulnerability 

       ---------------------------------------- 

    Researchers have discovered a timing attack on RSA keys, to 
which OpenSSL is generally vulnerable, unless RSA blinding has 
been turned on. 
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Distribution of Prime Numbers 

 

    Theorem  (Gaps between primes) 

    For every positive integer n, there are n or 
more consecutive composite numbers. 

 

 Proof Idea:    

    The consective numbers    
 (n+1)! + 2, (n+1)! + 3, …., (n+1)! + n+1  

    are composite. 

    (Why?)  
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Distribution of Prime Numbers 
 

 

    Definition 

    Given real number x, let (x) be the number of 
prime numbers ≤ x. 

    

    Theorem (prime numbers theorem) 

 

 

    For a very large number x, the number of prime 
numbers smaller than x is close to x/ln x.  

 

 

 



lim
x

(x)

x /ln x
1
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Generating large prime numbers 

• Randomly generate a large odd number and 

then test whether it is prime. 

• How many random integers need to be tested 

before finding a prime? 

– the number of prime numbers  p is about N / ln p 

– roughly every ln p integers has a prime 

• for a 512 bit p, ln p = 355.  on average, need to test 

about 177=355/2 odd numbers  

• Need to solve the Primality testing problem 

– the decision problem to decide whether a number is a 

prime 
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Naïve Method for Primality Testing 

    Theorem 

   Composite numbers have a divisor below their square root. 
 

     Proof idea: 

    n composite, so n = ab,  0 < a ≤ b < n, then a ≤ sqrt(n), otherwise 

we obtain ab > n (contradiction).  
 

    Algorithm 1 

            for (i=2, i < sqrt(n) + 1); i++) { 

                  If i a divisor of n { 

   n is composite 

                  } 
             } 

            n is prime 

    Running time is O(sqrt(n)), which is exponential in the size of the 

binary representation of n 
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More Efficient Algorithms for 

Primality Testing  
      

 Primality testing is easier than integer  
factorization, and has a polynomial-time 
algorithm. 
 The Agrawal–Kayal–Saxena primality test was 

discovered in 2002 
 Improved version of the algorithm runs in  

 O((ln x)6), less efficient than randomized 
algorithms 
 

    How can we tell if a number is prime or not 
without factoring the number? 

• The most efficient algorithms are randomized. 

• Solovay-Strassen 

• Rabin-Miler 
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Quadratic Residues Modulo A Prime 

Definition 

• a is a quadratic residue modulo p if   b Zp
*  such 

that  b2  a mod p,  

• otherwise when a0, a is a quadratic nonresidue 

•        is the set of all quadratic residues 

•        is the set of all quadratic nonresidues 

• If p is prime there are (p-1)/2 quadratic residues in Zp
*, 

that is |Qp| = (p-1)/2 

– let g be generator of Zp
*, then a=gj is a quadratic residue iff. j 

is even. 


Qp



Qp
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How Many Square Roots Does an 

Element in  Qp have? 

• A element a in Qp has exactly two square roots 

– a has at least two square roots 

• if b2  a mod p, then (p-b)2  a mod p 

– a has at most two square roots in Zp* 

• if b2  a mod p and c2  a mod p, then b2 –c2  0 mod p 

• then p | (b+c)(b-c), either b=c, or b+c=p 
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Legendre Symbol 

• Let p be an odd prime and a an integer. 
The Legendre symbol is defined  

 
 

 

 

 

 

 

 



a

p











   0, if p | a

   1, if a  Qp

1, if a  Q p








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Euler’s Criterion 

Theorem: If  a (p-1)/2  1 mod p, then a is a quadratic 

residue ( if  -1 then a is a quadratic nonresidue) 

 

I.e., the Legendre symbol           = a (p-1)/2 mod p 

 

Proof. If a = y2, then a (p-1)/2 = y(p-1) = 1  (mod p) 

   If a (p-1)/2=1, let a = gj, where g is a generator of the 

group Zp*.  Then gj (p-1)/2 = 1 (mod p).  Since g is a 

generator, (p-1) | j (p-1)/2, thus j must be even.  

Therefore, a=gj is QR. 










p

a
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Jacobi Symbol 

• Let n  3 be odd with prime factorization 

 

 

• The Jacobi symbol is defined to be 

 

 

 

• The Jacobi symbol is in {0,-1,1}, and can be 

computed without factoring n or knowing 

whether n is prime or not 
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Euler Pseudo-prime 

• For any prime p, the Legendre symbol         = a(p-1)/2 mod p 

 

• For a composite n, if the Jacobi symbol       = a(n-1)/2 mod n 

then n is called an Euler pseudo-prime to the base a,  

– i.e., a is a “pseudo” evidence that n is prime 

 

• For any composite n, the number of “pseudo” evidences 

that n is prime for at most half of the integers in Zn* 










p

a










n

a
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The Solovay-Strassen Algorithm 

for Primality Testing 

Solovay-Strassen(n) 

  choose a random integer a s.t. 1an-1 

  x 

  if x=0 then return (“n is composite”)    // gcd(x,n)1 

  y  a(n-1)/2 mod n 

  if (x=y) then return (“n is prime”)   

   // either n is a prime, or a pseudo-prime 

              else return (“n is composite”)   

   // violates Euler’s criterion 

If n is composite, it passes the test with at most ½ prob.  
Use multiple tests before accepting n as prime. 










n

a
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Rabin-Miller Test 
 

• Another efficient probabilistic algorithm for determining if a 
given number n is prime.  

– Write n-1 as 2km, with m odd.  

– Choose a random integer a,  1 ≤ a ≤  n-1.  

– b  am mod n  

– if b=1 then return “n is prime” 

– compute b, b2,b4,…,b2^(k-1), if we find -1, return “n is 
prime” 

– return “n is composite” 

• A composite number pass the test with ¼ prob. 

• When t tests are used with independent a, a composite 
passes with (¼)t prob.  

• The test is fast, used very often in practice. 
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Why Rabin-Miller Test Work 

Claim: If the algorithm returns “n is composite”, then n is not 

a prime. 

 

Proof: if we choose a and returns composite on n, then 
– am1, am-1, a2m  -1, a4m  -1, …, a2^{k-1}m  -1  (mod n) 

– suppose, for the sake of contradiction, that n is prime,  

– then an-1=a2^{k}m=1 (mod n) 

– then there are two square roots modulo n, 1 and -1 

– then a2^{k-1}m = a2^{k-2}m = a2m = am = 1 (contradiction!) 

– so if n is prime, the algorithm will not return “composite” 
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Coming Attractions … 

• Public Key Encryption 

 

• Reading: Katz & Lindell: Chapter 

10 
 


