Cryptography
CS 555

Topic 17: Textbook RSA encryption
Outline and Readings

- Outline
 - One-way functions
 - RSA

- Readings:
 - Katz and Lindell: Chapter 6.0, 6.1.1, 6.1.2, 7.2
Towards One-Way Function

• We know how to use Pseudo-Random Generator (PRG) and Pseudo-Random Function (PRF) to construct encryption schemes and MAC.

• We know what algorithms that are used in practice in instantiate PRG and PRF.
 – But we cannot prove that they are PRG or PRF; we can only assume that they are

• Can we prove that some constructions are PRG or PRF based on something else?
One-Way Function

- A function f is one-way if
 - It is easy to compute
 - It is hard to invert, that is, given $y=f(x)$, where x is randomly chosen, it is difficult to find x' such that $f(x')=y$
- A one-way permutation is length-preserving (input and output have the same size) and one-to-one.
- Candidates for one-way functions
 - Multiplication: $f(x,y) = xy$
Relationship of One-Way Functions and Cryptography

• Secure encryption and MAC schemes imply/require the existence of one-way functions
• Given a one-way function, one can construct PRG, PRF, PRP
 – Thus one can construct secure encryption and MAC schemes
 – Details are more suitable for 655
• One-way functions are foundation of modern cryptography theory
Trapdoor One-way Functions

Definition:
A function $f: \{0,1\}^* \rightarrow \{0,1\}^*$ is a trapdoor one-way function iff $f(x)$ is a one-way function; however, given some extra information it becomes feasible to compute f^{-1}: given y, find x s.t. $y = f(x)$
Public-Key Encryption Needs One-way Trapdoor Functions

• Given a public-key crypto system,
 – Alice has public key K
 – E_K must be a one-way function, knowing $y = E_K[x]$, it should be difficult to find x
 – However, E_K must not be one-way from Alice’s perspective. The function E_K must have a trapdoor such that knowledge of the trapdoor enables one to invert it
RSA Algorithm

- Invented in 1978 by Ron Rivest, Adi Shamir and Leonard Adleman
- Security relies on the difficulty of factoring large composite numbers
- Essentially the same algorithm was discovered in 1973 by Clifford Cocks, who works for the British intelligence
Let \(p \) and \(q \) be two large primes.
Denote their product \(n=pq \).
\(Z_{pq}^* \) contains all integers in the range \([1,pq-1]\) that are relatively prime to both \(p \) and \(q \).
The size of \(Z_n^* \) is
\[
\Phi(pq) = (p-1)(q-1) = n-(p+q)+1
\]
For every \(x \in Z_{pq}^* \), \(x^{(p-1)(q-1)} \equiv 1 \)
Exponentiation in \mathbb{Z}_{pq}^*

- Motivation: We want to use exponentiation for encryption

- Let e be an integer, $1 < e < (p-1)(q-1)$

- When is the function $f(x) = x^e$, a one-to-one function in \mathbb{Z}_{pq}^*?
- If x^e is one-to-one, then it is a permutation in \mathbb{Z}_{pq}^*.
Review: Euler’s Theorem

Euler’s Theorem
Given integer n > 1, such that gcd(a, n) = 1 then
\[a^{\phi(n)} \equiv 1 \pmod{n} \]

Corollary: Given integer n > 1, such that gcd(a, n) = 1 then \(a^{\phi(n)-1} \mod n \) is a multiplicative inverse of a mod n.

Corollary: Given integer n > 1, x, y, and a positive integers with gcd(a, n) = 1. If \(x \equiv y \pmod{\phi(n)} \), then
\[a^x \equiv a^y \pmod{n} \]

Corollary (Fermat’s “Little” Theorem): \(a^{p-1} \equiv 1 \pmod{p} \)
Exponentiation in \mathbb{Z}_{pq}^*

• Claim: If e is relatively prime to $(p-1)(q-1)$ then $f(x) = x^e$ is a one-to-one function in \mathbb{Z}_{pq}^*

• Proof by constructing the inverse function of f. As $\gcd(e, (p-1)(q-1)) = 1$, then there exists d and k s.t. $ed = 1 + k(p-1)(q-1)$

• Let $y = x^e$, then $y^d = (x^e)^d = x^{1+k(p-1)(q-1)} = x \pmod{pq}$, i.e., $g(y) = y^d$ is the inverse of $f(x) = x^e$.
RSA Public Key Crypto System

Key generation:
Select 2 large prime numbers of about the same size, p and q
Compute $n = pq$, and $\Phi(n) = (q-1)(p-1)$
Select a random integer e, $1 < e < \Phi(n)$, s.t. $\gcd(e, \Phi(n)) = 1$
Compute d, $1 < d < \Phi(n)$ s.t. $ed \equiv 1 \pmod{\Phi(n)}$

Public key: (e, n)
Private key: d
RSA Description (cont.)

Encryption
Given a message \(M, 0 < M < n \quad M \in \mathbb{Z}_n - \{0\} \)
use public key \((e, n)\)
compute \(C = M^e \mod n \quad C \in \mathbb{Z}_n - \{0\} \)

Decryption
Given a ciphertext \(C \), use private key \((d)\)
Compute \(C^d \mod n = (M^e \mod n)^d \mod n = M^{ed} \mod n = M \)
RSA Example

- $p = 11$, $q = 7$, $n = 77$, $\Phi(n) = 60$
- $d = 13$, $e = 37$ \,(ed = 481; \, ed \mod 60 = 1)

- Let $M = 15$. Then $C \equiv M^e \mod n$
 - $C \equiv 15^{37} \pmod{77} = 71$

- $M \equiv C^d \mod n$
 - $M \equiv 71^{13} \pmod{77} = 15$
Coming Attractions …

- RSA Security
- Prime number generation
- Reading: Katz & Lindell: 7.2