Cryptography CS 555

Topic 17: Textbook RSA encryption

Outline and Readings

- Outline
 - One-way functions
 - RSA
- Readings:
 - Katz and Lindell: Chapter 6.0, 6.1.1, 6.1.2, 7.2

Towards One-Way Function

- We know how to use Pseudo-Random Generator (PRG) and Pseudo-Random Function (PRF) to construct encryption schemes and MAC.
- We know what algorithms that are used in practice in instantiate PRG and PRF.
 - But we cannot prove that they are PRG or PRF; we can only assume that they are
- Can we prove that some constructions are PRG or PRF based on something else?

One-Way Function

- A function f is one-way if
 - It is easy to compute
 - It is hard to invert, that is, given y=f(x), where x is randomly chosen, it is difficult to find x' such that f(x')=y
- A one-way permutation is length-preserving (input and output have the same size) and oneto-one.
- Candidates for one-way functions
 - Multiplication: f(x,y) = xy

Relationship of One-Way Functions and Cryptography

- Secure encryption and MAC schemes imply/require the existence of one-way functions
- Given a one-way function, one can construct PRG, PRF, PRP
 - Thus one can construct secure encryption and MAC schemes
 - Details are more suitable for 655
- One-way functions are foundation of modern cryptography theory

Trapdoor One-way Functions

Definition:

A function f: $\{0,1\}^* \rightarrow$ {0,1}* is a trapdoor oneway function iff f(x) is a one-way function; however, given some extra information it becomes feasible to compute f⁻¹: given y, find x s.t. y = f(x)

Public-Key Encryption Needs Oneway Trapdoor Functions

- Given a public-key crypto system,
 - Alice has public key K
 - \mathbf{E}_{K} must be a one-way function, knowing y= $\mathbf{E}_{K}[x]$, it should be difficult to find x
 - However, $\mathbf{E}_{\mathbf{K}}$ must not be one-way from Alice's perspective. The function $\mathbf{E}_{\mathbf{K}}$ must have a trapdoor such that knowledge of the trapdoor enables one to invert it

RSA Algorithm

- Invented in 1978 by Ron Rivest, Adi
 Shamir and Leonard Adleman
 - Published as R L Rivest, A Shamir, L Adleman, "On Digital Signatures and Public Key Cryptosystems", Communications of the ACM, vol 21 no 2, pp120-126, Feb 1978
- Security relies on the difficulty of factoring large composite numbers
- Essentially the same algorithm was discovered in 1973 by Clifford Cocks, who works for the British intelligence

- Let p and q be two large primes
- Denote their product n=pq.
- Z_n*= Z_{pq}* contains all integers in the range [1,pq-1] that are relatively prime to both p and q
- The size of Z_n^* is $\Phi(pq) = (p-1)(q-1)=n-(p+q)+1$
- For every $x \in Z_{pq}^*$, $x^{(p-1)(q-1)} \equiv 1$

Exponentiation in Z_{pq}^{*}

- Motivation: We want to use exponentiation for encryption
- Let e be an integer, 1<e<(p-1)(q-1)
- When is the function f(x)=x^e, a one-to-one function in Z_{pq}*?
- If x^e is one-to-one, then it is a permutation in Z_{pq}^* .

Review: Euler's Theorem

Euler's Theorem

Given integer n > 1, such that gcd(a, n) = 1 then $a^{\Phi(n)} \equiv 1 \pmod{n}$

Corollary: Given integer n > 1, such that gcd(a, n) = 1then $a^{\Phi(n)-1} \mod n$ is a multiplicative inverse of a mod n. **Corollary:** Given integer n > 1, x, y, and a positive

integers with gcd(a, n) = 1. If $x \equiv y \pmod{\Phi(n)}$, then

 $a^x \equiv a^y \pmod{n}$.

Corollary (Fermat's "Little" Theorem): $a^{p-1} \equiv 1 \pmod{p}$

Exponentiation in Z_{pq}^{*}

- Claim: If e is relatively prime to (p-1)(q-1) then f(x)=x^e is a one-to-one function in Z_{pq}*
- Proof by constructing the inverse function of f. As gcd(e,(p-1)(q-1))=1, then there exists d and k s.t. ed=1+k(p-1)(q-1)
- Let y=x^e, then y^d=(x^e)^d=x^{1+k(p-1)(q-1)}=x (mod pq),
 i.e., g(y)=y^d is the inverse of f(x)=x^e.

RSA Public Key Crypto System

Key generation:

Select 2 large prime numbers of about the same size, p and q

Compute n = pq, and $\Phi(n) = (q-1)(p-1)$

Select a random integer e, $1 < e < \Phi(n)$, s.t. gcd(e, $\Phi(n)$) = 1

Compute d, $1 < d < \Phi(n)$ s.t. $ed \equiv 1 \mod \Phi(n)$

Public key: (e, n) Private key: d

RSA Description (cont.)

Encryption

Decryption

Given a ciphertext C, use private key (d) Compute C^d mod n = (M^e mod n)^d mod n = M^{ed} mod n = M

RSA Example

- p = 11, q = 7, n = 77, Φ(n) = 60
- d = 13, e = 37 (ed = 481; ed mod 60 = 1)
- Let M = 15. Then C = M^e mod n - C = $15^{37} \pmod{77} = 71$
- $M \equiv C^d \mod n$ - $M \equiv 71^{13} \pmod{77} = 15$

Coming Attractions ...

- RSA Security
- Prime number generation
- Reading: Katz & Lindell: 7.2

