
CS555 Spring 2012/Topic 15 1

Cryptography

CS 555

Topic 15: HMAC, Combining Encryption &

Authentication

CS555 Spring 2012/Topic 15 2

Outline and Readings

• Outline
• Hash Family

• NMAC and HMAC

• CCA-secure encryption

• Combining encryption &

authentication

• Readings:
• Katz and Lindell: : 4.7,4.8,4.9

CS555 Spring 2012/Topic 15 3

Hash Family (Called Hash

Function in the Textbook)

• A hash family H is a function KXY

– X is a set of possible messages

– Y is a finite set of possible message digests

– K is the keyspace

– For each sK, there is a hash function hsH .

– Here, it is typically assumed that s is made public

• Unlike when we analyze a PRF

• Hash functions in practice (SHA-1, SHA-2) can be

viewed as hash family, where the IV is viewed as the key

Collision Resistant Hash Family

• A Hash family is collision resistant if no adversary has

negligible advantage in the following experiment:

– A key s is generated.

– Adversary is given s, and needs to find a collision on hs ,that is

find x1, x2 such that hs(x1)=hs(x2)

• A random hash function is chosen, and the adversary needs

to produce a collision on that

• Advantage of using the concept of collision resistant hash

family instead of a collision resistant hash function

– Now it makes sense to assume that there is no adversary

algorithm can produce collision.

– Why it does not make sense to say that there exists no algorithm

to produce a collision on a fixed hash function?

CS555 Spring 2012/Topic 15 4

Constructing MAC from Collision

Resistant Hash Functions

• Let h be a collision resistant hash function

• MACk(M) = h(k || M), where || denote

concatenation

– Okay as fixed-length MAC

– Insecure when variable-length messages are allowed

– Because of the Merkle-Damgard construction for hash

functions, given M and t=h(K || M), adversary can

compute M’ by appending to M some new data blocks,

and then h(K||M’)

CS555 Spring 2012/Topic 15 5

Idea of NMAC (Nested MAC)

• Given a compression function f, and a hash function h constructed

with f using the Merkle-Damgard method, NMAC defines

MACk1,k2(m)=f(k1|| h(k2||m)).

– Technically, both f and h are parameterized by a randomly chosen s,

however, we ignore it

• NMAC is secure if both (1) h produces no collision, and (2) f(k||m) is

a secure fixed-length MAC.

– f(k||m) is a secure MAC means that adversary cannot compute f(k||m’)

even after obtaining f(k||m1), f(k||m2), …

• Not implied by f being collision resistant, but in general safely assumed to be

true for practical hash functions

– Proof. A forgery against f(k1|| h(k2||m’)) means that either h(k2||m’) =

h(k2||mi) for a queried mi, which means h is not collision resistant; or one

computes f(k1||d= h(k2||m’)), for a new value d, which means that f is not

a secure MAC.

CS555 Spring 2012/Topic 15 6

CS555 Spring 2012/Topic 15 7

HMAC: A Derivative of NMAC

• K+ is the key padded (with 0) to B bytes, the input block size of the

hash function

• ipad = the byte 0x36 repeated B times

• opad = the byte 0x5C repeated B times.

• Essentially NMAC. Differs in that NMAC uses independent k1 and

k2, HMAC uses two keys that are computed from one key

• Proven to be PRF if compression function is PRF.

• If used with a secure hash functions (e.g., SHA-256) and

according to the specification (key size, and use correct output), no

known practical attacks against HMAC exists

HMACK[M] = Hash[(K+  opad) || Hash[(K+  ipad)||M)]]

CS555 Spring 2012/Topic 15 8

HMAC Overview

Constructing CCA-Secure

Encryption

• Construction 4.19. CCA-secure encryption scheme.

– Uses a CPA-secure encryption scheme, and a secure MAC.

– In key generation, generates k1 for encryption, and k2 for MAC.

– To encrypt a message m, computes ciphertext

 c=Enck1(m), t=MACk2(c1)

• The ciphertext of the scheme is a pair (c,t)

– To decrypt a ciphertext c, t, first check whether Vrfyk2(c,t)=1; if

yes, outputs Deck1(c); if not, outputs 

• That is, decline to decrypt if the MAC does not verify

• This is CCA-secure because the adversary gets nothing

from the decryption oracle, unless the adversary can

break the MAC first

CS555 Spring 2012/Topic 15 9

CS555 Spring 2012/Topic 15 10

Encryption and Authentication

• Three ways for encryption and authentication
– Authenticate-then-encrypt (AtE), used in SSL

• a = MAC(x), C=E(x,a), transmit C

– Encrypt-then-authenticate (EtA), used in IPSec

• C=E(x), a=MAC(C), transmit (C,a)

– Encrypt-and-authenticate (E&A), used in SSH

• C=E(x), a=MAC(x), transmit (C,a)

• Which way provides secure communications
when embedded in a protocol that runs in a real
adversarial network setting?

Encryption Alone May Be

Insufficient for Privacy

• If an adversary can manipulate a ciphertext such

that the observable behavior (such as success or

failure of decryption) differs depending on the

content of plaintext, then information about

plaintext can be leaked

• To defend against these, should authenticate

ciphertext, and only decrypt after making sure

ciphertext has not changed

• Encrypt-then-authenticate (EtA) is secure

– C=E(x), a=MAC(C), transmit (C,a)

CS555 Spring 2012/Topic 15 11

CS555 Spring 2012/Topic 15 12

Encryption Alone May Be Insufficient

for Privacy: An Artificial Example

• Given a secure stream cipher (or even one-time pad) E,

Consider encryption E*

– E*[x] = E[encode[x]]

• encode[x] replaces 0 with 00, and 1 with either 01 or 10.

– How to decrypt?

– E*[x] is secure

• Using E* may not provide confidentiality in some usage

– Consider the case an adversary flips the first two bits of E*[x]

– When the bits are 01 or 10, flipping results in no change after decrypt

– When the bits are 00, flipping result in decryption failure

– Learning whether decryption succeeds reveal first bit

CS555 Spring 2012/Topic 15 13

AtE and E&A are insecure

• Authenticate-then-encrypt (AtE) is not always

secure

– a = MAC(x), C=E(x,a), transmit C

– As first step is decryption, its success or failure may

leak information.

– AtE, however, can be secure for some encryption

schemes, such as CBC or OTP (or stream ciphers)

• Encrypt-and-authenticate (E&A) is not secure

– C=E(x), a=MAC(x), transmit (C,a)

– MAC has no guarantee for confidentiality

CS555 Spring 2012/Topic 15 14

Coming Attractions …

• Private key management and the

Public key revolution

• Reading: Katz & Lindell: Chapter 9

