Cryptography CS 555

Topic 13: Message Authentication Code

Outline and Readings

- Outline
 - Review of HW1
 - Message authentication code and its security definition
 - Construction of MAC using PRF
- Readings:
 - Katz and Lindell: : 4.1-4.4

HW1: Problem 2: Breaking enhancement of Vigenere

- Let k_i denote the Vigenere key stream
- Let m_i denote the message stream
- Let z_i denote the ciphertext stream

$$- z_1 = x_1 + k_1; \dots; z_{13} = x_{13} + k_{13}; z_{14} = m_1 + x_1 + k_{14}$$

• We have

-
$$z_{14}-z_1=m_1+k_{14}-k_1$$
 and more generally
 $z_{j+13}-z_j=m_j+k_{j+13}-k_j$

- Under known message attack, one could easily decrypt another ciphertext (of same or less length)
- Under ciphertext-only attack against the sequence z_{j+13}-z_j this is similar to Vigenere with 13 times original key length

Problem 5 & 6

- For arbitrary symmetric cipher
 - It must be that $|M| \leq |C|$, and it is possible that |M| < |C|.
 - Each is possible: |M| > |K|, |M| = |K|, and |M| < |K|.
 - Each is possible: |C| > |K|, |C| = |K|, and |C| < |K|.
- For symmetric cipher that gives perfect secrecy
 - It must be that $|M| \leq |C|$, and it is possible that |M| < |C|.
 - It must be that $|M| \le |K|$, and it is possible that |M| < |K|.
 - Each is possible: |C| > |K|, |C| = |K|, and |C| < |K|.
 - Different keys can have same effect
 - Encryption can be randomized

Problem 7 & 8

- Problem 7. Exercise 2.5. Consider the "encryption" scheme Enc_k(m)=m
- Problem 8. Exercise 2.7 Prove that Pr [M=m | C=c] = Pr [M = m] implies Pr[PrivK^{eav}_{A,Π}=1] =¹/₂ prob
 - For any pair (m0,m1) chosen by A, A's behavior can be defined by giving a prob p_c for each c, which is the prob that A outputs 0 when seeing c; then the prob of A winning is

$$\sum_{c} \Pr[c] (\Pr[A(c) = 0] \Pr[m_0|c] + \Pr[A(c) = 0] \Pr[m_1|c])$$

= $\sum_{c} \Pr[c] (p_c \frac{1}{2} + (1 - p_c) \frac{1}{2}) = \frac{1}{2}$

Problem 9

- Exercise 2.7 Prove that Pr[PrivK^{eav}_{A,Π}=1] =½ implies that Pr [M=m | C=c] = Pr [M = m]
- Proof idea. If Pr [M=m | C=c] = Pr [M = m] does not hold, then ∃c₀,m₀,m₁ s.t. Pr [M=m₀ | C=c₀] > Pr [M=m₁ | C=c]
- Construct A as follows:
 - A outputs m₀,m₁
 - If A receives c_0 , output 0. Otherwise, A outputs 0 with prob $\frac{1}{2}$.
 - $\Pr[A(c_0) = 0] \Pr[m_0|c_0] + \Pr[A(c) = 0] \Pr[m_1|c_0] = \Pr[m_0|c_0] > \frac{1}{2}$

Data Integrity and Source Authentication

- Encryption does not protect data from modification by another party.
- Need a way to ensure that data arrives at destination in its original form as sent by the sender and it is coming from an authenticated source.

Security Objectives/Properties (C, I, A)

- Confidentiality (secrecy, privacy)
 only those who are authorized to know can know
- Integrity (also authenticity in communication)
 - Only modified by authorized parties and in permitted ways
 - Any unauthorized modification can be detected
 - Do things that are expected
- Availability
 - those authorized to access can get access

Encryption vs. Message Authentication

- Encryption using stream ciphers
 - Flipping any bit in ciphertext results in corresponding bit flipped after deryption
- Encryption using block ciphers
 - OFB & CTR the same as above
 - What about the ECB mode?
 - What about the CBC mode?
- An observation
 - Encryption schemes so far have the property that every string of certain length are valid ciphertexts
 - To provide message authentication, must make valid ciphertext "sparse" among all string

Message Authentication Code

- Assume that sender and receiver share a secret key, which can be used for authentication.
- A message authentication code (or MAC) consists of the following three PPT algorithms
 - $k \leftarrow \text{Gen}(1^n)$ key generation
 - $-t \leftarrow \mathbf{Mac}_k(m)$ tag-generation
 - b := Vrfy_k(m,t) verification algorithm
 b=1 meaning valid, b=0 meaning invalid

Must satisfy $\forall k \forall m \operatorname{Vrfy}_k(m, \operatorname{Mac}_k(m)) = 1$ When *m* must be from $\{0,1\}^{\ell(n)}$, this is a **fixed-length** MAC.

Security of MAC

The experiment Mac-forge_{A,Π}

- − $k \leftarrow \text{Gen}(1^n)$
- Adversary A is given oracle access to $MAC_k(\cdot)$
- Adversary outputs (*m*, *t*). Let Q denote the set of all queries that A asked to the oracle.
- Adversary wins if $Vrfy_k(m, t) = 1$ and $m \notin Q$
- A MAC Π is existential unforgeable under an adaptive chosen-message attack (or just secure) if for all PPT A, there exists a negligible function negl such that Pr[Mac-forge_{A,Π}=1] ≤ negl(n)

Types of Forgery Attacks

- Existential forgery: adversary chooses the message to forge after querying the MAC oracle
- Selective forgery: adversary chooses one message before carrying out the attack, and then cannot query the message
- Universal forgery: adversary can create MAC for any message after querying the MAC oracle

Replay Attacks

- A secure MAC ensures that adversary cannot generate new messages that can be authenticated
- It does not prevent replaying of an old message
- Standard ways to defend against replay attacks include
 - Using sequence numbers for messages
 - Using timestamp for messages
 - Using random nonce
 - A \rightarrow B: n where n is a freshly chosen random number, aka, a nonce
 - $B \rightarrow A$: (m, n, MAC_k(m,n))

Fixed-length MAC using PRF: Construction 4.3

- Let F be a PRF. Define a fixed-length MAC as follows:
 - **Gen**(1ⁿ) outputs $k \leftarrow \{0,1\}^n$ uniformly at random
 - $Mac_k(m)$ outputs t := $F_k(m)$

-
$$Vrfy_k(m,t) = 1$$
 iff $t = F_k(m)$

This is fixed-length because m can be chosen only from the input domain of F.

- Theorem 4.4. If F is a PRF, then this construction is a secure fixed-length MAC.
- Proof idea. Obviously secure if F is a random function. How to construct the distinguisher given A that breaks the MAC?

Extensions to Variable-Length Messages

- Methods that do not work. First divide message into blocks then,
 - XOR all blocks together, and then compute tag on the result.
 - Authentication each block separately.
 - Authentication each block with a sequence number.

Construction 4.5

It seems best to skip this construction.

- Basic idea: a msg is divided into blocks, the last block is padded with 0's; then compute the tag for each block separately; when computing the tag for the *i*'th msg block, include the following information
 - A newly generated random identifier
 - This ensures that the tag for one msg cannot be used for another msg

l

 m_i

- The length of the message
- The index of the block
- The i'th block of the msg

Need to ensure that each of the four fields is at most n/4 bits long. What if *l* is not included?

Proof Idea.

- Creating an existential forgery (m,t) implies one of the following event must occur
 - **Repeat**: the same identifier r is used in two msgs
 - How a forgery can occur?
 - Prob of this occurring is negligible
 - Forge: The adversary's msg and tag (m,t) includes one block that does not appear before (in answers to oracle queries)
 - When neither Repeat not Forge occurs:
 - t must be from one of previous msgs.
 - m must be of the same length as the previous msg
 - Every single block must be the same

Coming Attractions ...

- CBC-MAC; Collision-resistant hash functions
- Reading: Katz & Lindell: 4.5,4.6

