Cryptography CS 555

Topic 10: Block Cipher Security & AES

Outline and Readings

- Outline
 - Attacks against block ciphers
 - Differential cryptanalysis
 - Linear cryptanalysis
 - Double & triple encryption
 - AES

• Katz and Lindell: 5.4, 5.5, 5.6

Block Cipher Security

- Two attack objectives
 - Key Recovery
 - Distinguish from a random permutation
- Four attack modes
 - Ciphertext only
 - Known plaintext
 - Chosen plaintext
 - Chosen ciphertext

Attacking Block Ciphers

- Standard attacks
 - exhaustive key search
 - dictionary attack
 - differential cryptanalysis
 - linear cryptanalysis
- Side channel attacks against implementations.
 - Timing attacks
 - Power consumption attacks
 - Fault injection attacks

Chosen-Plaintext Dictionary Attacks Against Block Ciphers

- Construct a table with the following entries
 - (K, $E_{\kappa}[0]$) for all possible key K
 - Sort based on the second field (ciphertext)
 - How much time does this take?
- To attack a new key K (under chosen message attacks)
 - Choose 0, obtain the ciphertext C, looks up in the table, and finds the corresponding key
 - How much time does this step take?
- Trade off space for time

Differential Cryptanalysis

- Main idea:
 - This is a chosen plaintext attack,
 - The attacker knows many (plaintext, ciphertext) pairs

– Difference $\Delta_P = P_1 \oplus P_2$, $\Delta_C = C_1 \oplus C_2$

- Distribution of Δ_{c} 's given Δ_{P} may reveal information about the key (certain key bits)
- After finding several bits, use brute-force for the rest of the bits to find the key.

Differential Cryptanalysis of DES

- Surprisingly ... DES was resistant to differential cryptanalysis.
- At the time DES was designed, the authors knew about differential cryptanalysis. S-boxes were designed to resist differential cryptanalysis.
- Against 8-round DES, attack requires 2³⁸ known plaintext-ciphertext pairs.
- Against 16-round DES, attack requires 2⁴⁷ chosen plaintexts.
- Differential cryptanalysis not effective against DES in practice.

Linear Cryptanalysis of DES

- Introduced in 1993 by M. Matsui
- Instead of looking for isolated points at which a block cipher behaves like something simpler, it involves trying to create a simpler approximation to the block cipher as a whole.

Basic idea of linear cryptanalysis

- Suppose that
- (*) Pr [$M_{i1} \oplus M_{i2} \oplus ... \oplus M_{iu} \oplus C_{j1} \oplus C_{j2} \oplus ... \oplus C_{jv} \oplus K_{p1} \oplus K_{p2} \oplus ... \oplus K_{pw} = 1$] = 0.5 + ϵ
- Then one can recover some key bits given large number of PT/CT pairs
- For DES, exists (*) with $\varepsilon = 2^{-21}$
- Using this method, one can find 14 key bits using (2²¹)² PT/CT pairs

Linear Cryptanalysis of DES

- M. Matsui showed (1993/1994) that DES can be broke:
 - 8 rounds: 2²¹ known plaintext
 - 16 rounds: 2⁴³ known plaintext, 40 days to generate the pairs (plaintext, ciphertext) and 10 days to find the key
- The attack has no practical implication, requires too many pairs.
- Exhaustive search remains the most effective attack.

DES Strength Against Various Attacks

Attack Method	Known	Chosen	Storage complexity	Processing complexity
Exhaustive precomputation	-	1	2 ⁵⁶	1
Exhaustive search	1	-	negligible	2 ⁵⁵
Linear cryptanalysis	2 ⁴³ 2 ³⁸	-	For texts	2 ⁴³ 2 ⁵⁰
Differential cryptanalysis	- 2 ⁵⁵	2 ⁴⁷ -	For texts	2 ⁴⁷ 2 ⁵⁵

The weakest point of DES remains the size of the key (56 bits)!

Double Encryption:

- Given a block cipher E_k[m],
- Define $Enc_{k1,k2}[m] = E_{k1}[E_{k2}[m]]$
- The "Meet-in-the-middle" attack
 - Given a pair (m,c), we have $\mathbf{D}_{k1}[c] = \mathbf{E}_{k2}[m]$
 - Build table of all encryptions of m
 - Then for each possible k, test if $\mathbf{D}_{k}(c)$ is in the table
 - For 2DES, this takes about 2⁵⁶ time
 - Requires $\approx 2^{56}$ space $\approx 10^{16}$
- Effective key length is 56, instead of 2*56=112

Triple Encryption

- Let E_k[M] be a symmetric block cipher
- Variant 1: $3\mathbf{E}_{k1,k2,k3}[M] = \mathbf{E}_{k1}[\mathbf{D}_{k2}[\mathbf{E}_{k3}[M]]]$
 - Observe: when k1 = k2 = k3, $3E_{k1,k2,k3}[M] = E_k[M]$
 - For triple DES, key=168 bits
 - Effective key length is only 112 bits because of the meet-in-themiddle attack.
- Variant 2: $3\mathbf{E}_{k1,k2}[M] = \mathbf{E}_{k1}[\mathbf{D}_{k2}[\mathbf{E}_{k1}[M]]]$
 - Given one pair (m,c), no known attack with less than 2²ⁿ time
 - There exists a 2ⁿ chosen-plaintext attack using 2ⁿ chosen pairs

Strengthening DES to avoid Exhaustive Search: DES-X

- Given block cipher **E**_k
- Define EX_{k1,k2,k3}(M)=E_{k2}(M⊕k3) ⊕k1
- DESX: key-length=2*64+56=184 bits
- Increases effective key length
- Fast!

Advanced Encryption Standard

- In 1997, NIST made a formal call for algorithms stipulating that the AES would specify an unclassified, publicly disclosed encryption algorithm, available royalty-free, worldwide.
- Goal: replace DES for both government and private-sector encryption.
- The algorithm must implement symmetric key cryptography as a block cipher and (at a minimum) support block sizes of 128-bits and key sizes of 128-, 192-, and 256-bits.
- In 1998, NIST selected 15 AES candidate algorithms.
- On October 2, 2000, NIST selected Rijndael (invented by Joan Daemen and Vincent Rijmen) to as the AES.

AES Features

- Designed to be efficient in both hardware and software across a variety of platforms.
- Not a Feistel Network
- Block size: 128 bits
- Variable key size: **128**, **192**, or **256** bits.
- Variable number of rounds (10, 12, 14):
 - 10 if K = 128 bits
 - 12 if K = 192 bits
 - 14 if K = 256 bits
- No known weaknesses

Overview of Rijndael/AES

- Essentially a Substitution-Permutation Network
- 128-bit round key used for each round:
 - -128 bits = 16 bytes = 4 words
 - needs N+1 round keys for N rounds
 - needs 44 words for 128-bit key (10 rounds)
- State: 4 by 4 array of bytes
 - 128 bits = 16 bytes

Rijandael: High-Level Description

State = XAddRoundKey(State, Key₀) (op1) for r = 1 to Nr - 1SubBytes(State, S-box) (op2) ShiftRows(State) (op3) MixColumns(State) (op4) AddRoundKey(State, Key,) endfor SubBytes(State, S-box) ShiftRows(State) AddRoundKey(State, Key_{Nr}) Y = State

AddRound Key

State is represented as follows (16 bytes):

S _{0,0}	S _{0,1}	S _{0,2}	S _{0,3}
S _{1,0}	S _{1,1}	S _{1,2}	S _{1,3}
S _{2,0}	S _{2,1}	S _{2,2}	S _{2,3}
S _{3,0}	S _{3,1}	S _{3,2}	S _{3,3}

AddRoundKey(State, Key):

Spring 2012/Topic 10

SubBytes

- Byte substitution using non-linear S-Box (independently on each byte).
- S-box is represented as a 16x16 array, rows and columns indexed by hexadecimal bits
- 8 bytes replaced as follows: 8 bytes defines a hexadecimal number rc, then s_{r,c} = binary(Sbox(r, c))

Rijandael S-box

- How is AES S-box different from DES S-box?
 - Only one S-box
 - The S-box is not random; rather it is based on modular arithmetic with polynomials in the field

$$F_{2^{x}} = \frac{Z_{2}[x]}{(x^{8} + x^{4} + x^{3} + x + 1)}$$

 as it can be defined algebraically, it can be easily analyzed, can be proven that linear and differential cryptanalysis fail

S-box Table

0 2 8 9 Α В D Ε F 1 5 6 7 С 3 **0** 63 7C F2 6B 6F C5 30 01 67 2B FE 77 7B D7 AB 76 **1** CA AF 82 C9 7D FA 59 47 F0 AD D4 A2 9C A4 72 **C**0 **2** B7 FD 93 **26** 36 3F F7 CC 34 A5 E5 F1 31 15 71 **D**8 C3 18 12 80 **3** 04 C7 23 96 05 9A 07 E2 EB 27 B2 75 **4** 09 83 2C **1A** 1B 6E 5A A0 52 3B D6 **B**3 29 E3 2F 84 **5** 53 D1 00 **ED** 20 FC B1 5B 6A CB ΒE 39 4A 4C 58 CF 6 D0 EF AA FB 43 4D 33 85 45 F9 02 7F 50 3C 9F A8 **7** 51 8F 92 9D 38 F5 BC FF A3 40 B6 DA 21 10 **F**3 D2 8 CD 0C EC 5F 97 44 C4 A7 3 17 7E 3D 64 5D 19 73 46 EE 5E **9** 60 81 4F DC 22 2A 90 88 **B**8 14 DE 0B DB **A** E0 5C C2 D3 AC 32 3A 0A 49 06 24 62 91 95 E4 79 **B** E7 C8 6D 8D D5 4E A9 6C 56 F4 65 37 EΑ 7A AE 08 C BA 1C A6 B4 E8 DD 74 1F 4B BD 8B 78 25 2E C6 8A 3E 48 35 **D** 70 B5 66 03 F6 0E 61 57 B9 86 C1 1D 9E **E** E1 **F8** 11 69 D9 8E 94 9B 1E 87 E9 CE 55 98 28 DF **F** 8C BF E6 A1 89 0D 42 68 41 99 2D 0F B0 54 BB 16

Example: hexa 53 is replaced with hexa ED

Rijandael: High-Level Description

State = XAddRoundKey(State, Key₀) (op1) for r = 1 to Nr - 1SubBytes(State, S-box) (op2) ShiftRows(State) (op3) MixColumns(State) (op4) AddRoundKey(State, Key,) endfor SubBytes(State, S-box) ShiftRows(State) AddRoundKey(State, Key_{Nr}) Y = State

Diffusion Step

ShiftRows

S _{0,0}	S _{0,1}	S _{0,2}	S _{0,3}		S _{0,}	S _{0,1}	S _{0,2}	S _{0,3}	
S _{1,0}	S _{1,1}	S _{1,2}	S _{1,3}	>	0 S _{1,}	S _{1,2}	S _{1,3}	S _{1,0}	┌┫╧╧╧╧┙
S _{2,0}	S _{2,1}	S _{2,2}	S _{2,3}		1 S _{2,}	S _{2,3}	S _{2,0}	S _{2,1}	[
S _{3,0}	S _{3,1}	S _{3,2}	S _{3,3}		2 S _{3,}	S _{3,0}	S _{3,1}	S _{3,2}	┌────

MixColumns

- Interpret each column as a vector of length 4.
- Each column of State is replaced by another column obtained by multiplying that column with a matrix in F_{2^x}

Coming Attractions ...

- Block cipher encryption modes
- Reading: Katz & Lindell: 3.6.3, 3.6.4, 3.7

