Cryptography CS 555

Topic 9: Block Cipher Construction & DES

Outline and Readings

- Outline
 - Substitution-Permutation Networks
 - Feistel networks
 - DES
- Readings:
 - Katz and Lindell: 5.1,5.2,5.3

Why Block Ciphers?

- Another way to defeat frequency analysis
 - Make the unit of transformation larger, rather than encrypting letter by letter, encrypting block by block
- Provide an efficient implementation for PRF and PRP
- Block ciphers are important building blocks for constructing encryption schemes

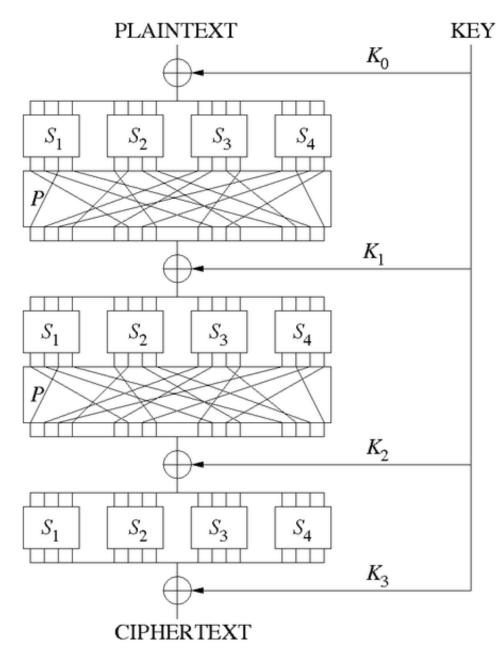
Block Ciphers

- A block cipher is an efficient, keyed permutation
 F: {0,1}ⁿ × {0,1}^ℓ → {0,1}^ℓ
 - $F_k(x) = F(k,x)$ is a bijection (permutation)
 - Block size: *t*
 - Key size: n

Truly Random Permutation

- The truly random permutation is a substitution cipher from {0,1}ⁿ to {0,1}ⁿ
 - total number of keys: 2ⁿ!
 - insecure when n is small
 - impractical when n is large: key length $s = log (2^{n}!) > (n-1)2^{n-1}$
 - Block ciphers approximate random permutation for large n
 - Use a subset of the 2ⁿ! possible permutations

Confusion-Diffusion Paradigm


- Construct block cipher from many smaller random (or random-looking) permutations
- Confusion: e.g., for block size 128, uses 16 8-bit random permutation

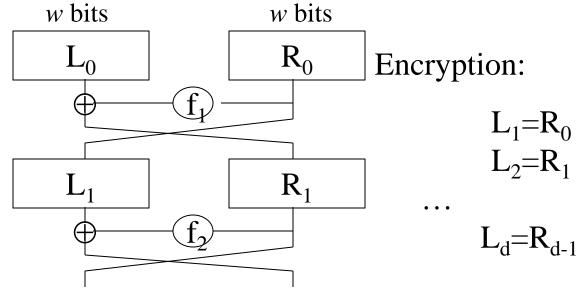
$$- F_{k}(x) = f_{1}(x_{1}) \dots f_{16}(x_{16})$$

- Where key k selects 16 8-bit random permutation.
- Does $F_k(\cdot)$ look like a random permutation?
- Diffusion: bits of $F_k(x)$ are permuted (re-ordered)
- Multiple rounds of confusion and diffusion are used.

Substitution-Permutation Networks

- A variant of the Confusion-Diffusion Paradigm
 - ${f_i}$ are fixed and are called s-boxes
 - Sub-keys are XORed with intermediate result
 - Sub-keys are generated from the master key according to a key schedule
- Each round has three steps
 - Message XORed with sub-key
 - Message divided and went through s-boxes
 - Message goes through a mixing permutation (bits reordered)

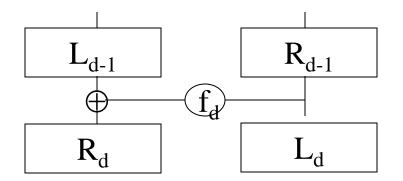
Taken from http://en.wikipedia.org/ wiki/Substitutionpermutation_network


Design Principles of Substitution-Permutation Networks

- Design Principle 1. S-boxes are invertible
- Design Principle 2. The avalanche effect: small changes in input result in large changes in output.
 - A single-bit difference in each s-box results in changes in at least two bits in output
 - The mixing permutation distributes the output bits of any s-box into different s-boxes
 - The above, with sufficient number of rounds, achieves the avalanche effect.

Feistel Network

- A high-level structure that constructs an invertible function from non-invertible components
 - Components do not need to be invertible
 - Can thus behave "more randomly"
- A Feistel Network is fully specified given
 - the block size: n = 2w
 - number of rounds: d
 - d round functions $f_1, \ldots, f_d: \{0,1\}^w \rightarrow \{0,1\}^w$
- Used in DES, IDEA, RC5, and many other block ciphers; but not in AES

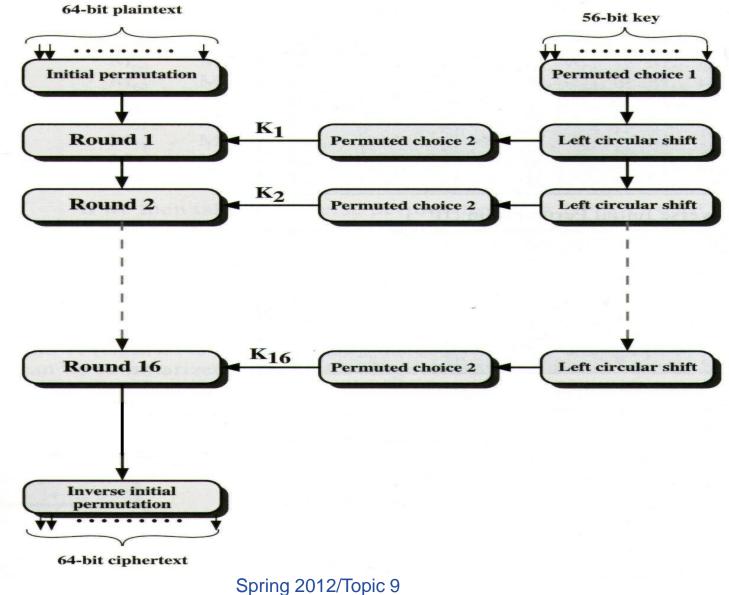

Feistel Network

 $L_1 = R_0 \qquad R_1 = L_0 \oplus f_1(R_0) \\ L_2 = R_1 \qquad R_2 = L_1 \oplus f_2(R_1)$

 $L_d = R_{d-1}$ $R_d = L_{d-1} \oplus f_d(R_{d-1})$

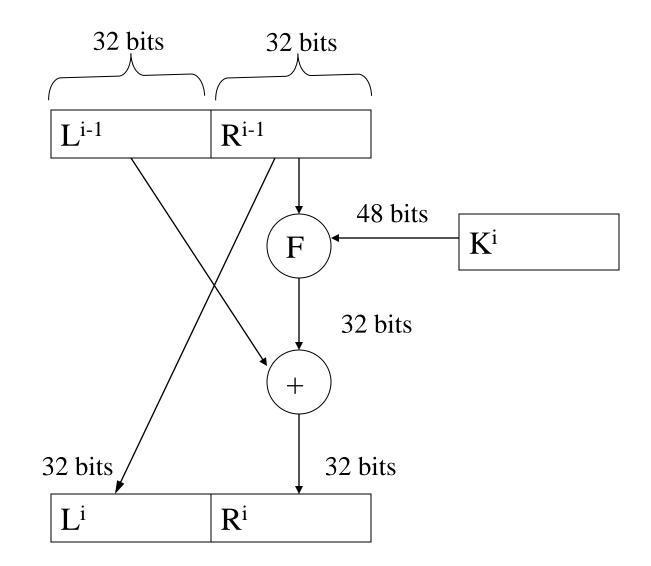
Decryption:

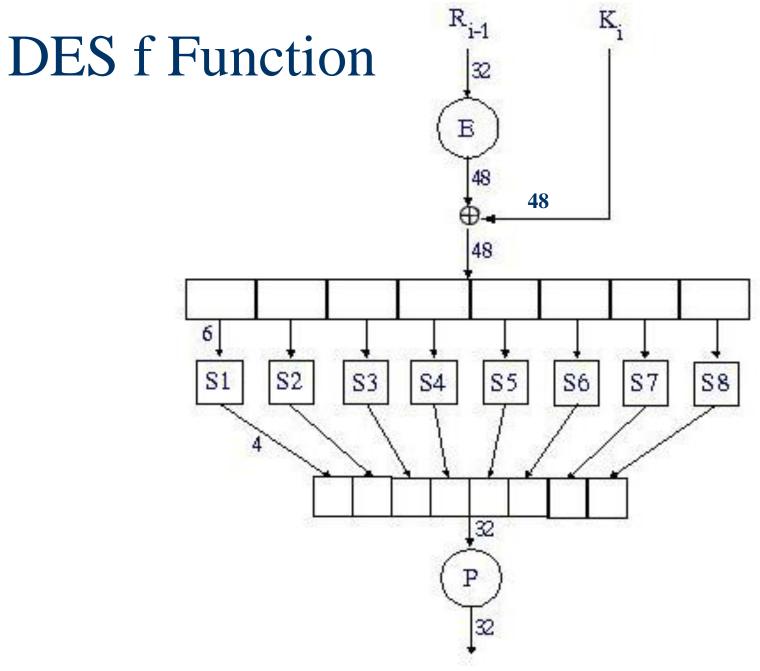
 $\begin{array}{ccc} R_{d-1} = L_d & L_{d-1} = R_d \oplus f_d(L_d) \\ & & \\ R_0 = L_1; & L_0 = R_1 \oplus f_1(L_1) \end{array}$


Feistel Network

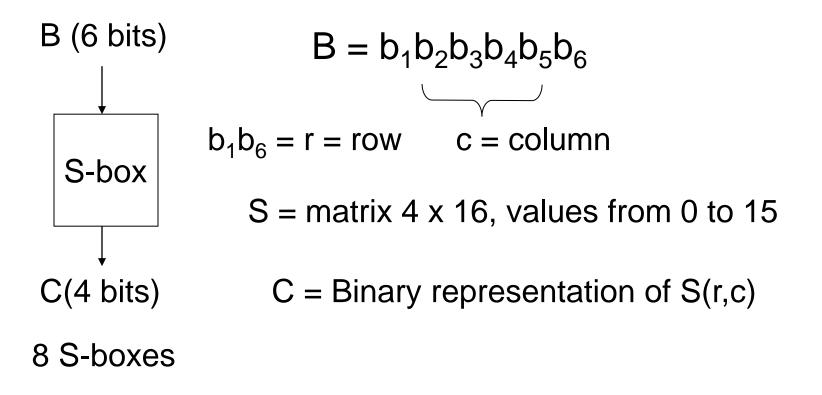
- Always invertible no matter what the round function is.
- Each round function is similar to that in the substitution-permutation network
 - Except that the s-boxes do not need to be invertible

Data Encryption Standard (DES)


- Designed by IBM, with modifications proposed by the National Security Agency
- US national standard (and de facto international standard) from 1977 to 2001
- Block size 64 bits; Key size 56 bits; 16-round Feistel network
- Designed mostly for hardware implementations
- Considered insecure now because of short key length
 - vulnerable to brute-force attacks

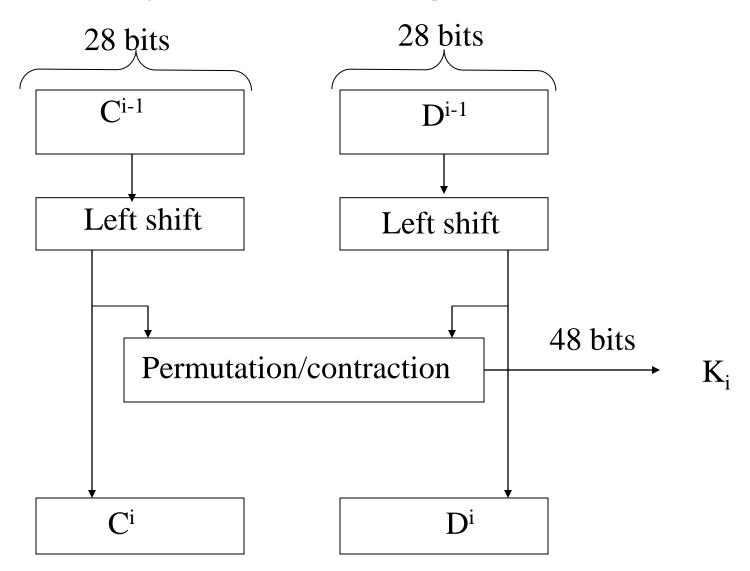

DES Structure

CS555


DES Round i

S-boxes are the only non-linear elements in DES design

About the S-boxes ...


Example: S₁

14	4	13	1	2	15	11	8	3	10	6	12	5	9	0	7
0	15	7	4	14	2	13	1	10	6	12	11	9	5	3	8
4	1	14	8	13	6	2	11	15	12	9	7	3	10	5	0
15	12	8	2	4	9	1	7	5	11	3	14	10	0	6	13

 $S(i, j) \in \{0, 1, \dots, 15\}$, corresponds to 4 bits

- Each row is a permutation of {0,1,...,15}.
- Changing one bit in input changes at least two bits in output

DES Key Scheduling

DES Weak Keys

- Definition: A DES weak key is a key K such that E_K(E_K(x))=x for all x, i.e., encryption and the decryption is the same
 - these keys make the same sub-key to be generated in all rounds.
- DES has 4 weak keys (only the 56-bit part of it) 0000000 0000000 0000000 FFFFFF
 FFFFFF 0000000 FFFFFFF 0000000
- Weak keys should be avoided at key generation.

Exhaustive Key Search of DES

Brute Force:

- Known-Plaintext Attack
- Try all 2⁵⁶ possible keys
- Requires constant memory
- Time-consuming
- DES challenges: (RSA)
 - msg="the unknown message is :xxxxxxxx"
 - CT=" C1 | C2 | C3 | C4"
 - 1997 Internet search: 3 months
 - 1998 EFF machine (costs \$250K): 3 days
 - 1999 Combined: 22 hours

Coming Attractions ...

- Block cipher security & AES
- Reading: Katz & Lindell: 5.4,5.5,5.6

