Cryptography CS 555

Topic 8: Pseudorandom Functions and CPA Security

Outline and Readings

- Outline
 - Keyed Function
 - Pseudorandom function (PRF)
 - Encryption using PRF
 - Pseudorandom Permutation (PRF)

- Readings:
 - Katz and Lindell: 3.6.1 ~ 3.6.3

Keyed Function

- A key function F: $\{0,1\}^k \times \{0,1\}^* \rightarrow \{0,1\}^*$
 - Takes two inputs, first called the key, second input
 - When k is fixed, $F_k: \{0,1\}^* \rightarrow \{0,1\}^*$
 - We say F is length-preserving when $|F_k(x)| = |x| = |k|$
- Informal: A keyed function F is pseudorandom, iff when k ← {0,1}ⁿ the resulting function is indistinguishable from a function chosen at uniform random from all functions {0,1}* → {0,1}*

Use Func_n: The Set of All Functions $\{0,1\}^* \rightarrow \{0,1\}^*$

- How large is the set $Func_n$? $(2^n)^{2^n} = 2^{n2^n}$ - When n=2, this is 2^8 ; n=8, this is 2^{2048} .
- Func_n can be viewed as a big look-up table, storing values for each string in {0,1}ⁿ
 - The table can then be viewed as a string of length n2ⁿ
 - Can define a keyed function such that each key selects a function in $Func_n$; call this the Random Function.
- How to implement a function f that is randomly chosen from Func_n?
 - Maintains a table that is initially empty. When one queries f(x), first looks in the table, if x does not exist, randomly chooses y, add (x,y) to the table, and return y; if (x,y) exists, then return y.

Properties of Random Functions

- Let R be the random function such that R_k, when k randomly chosen, gives a random function in Func_n
 - Knowing $R_k(a)$ gives absolutely no information about $R_k(b)$ for $a \neq b$
- How to use the random function R for encryption?

- How about $Enc_k(m)=R_k(m)$?

- Correct way: Given message m, randomly chooses r, then c := $\langle r,\,R_k(r)\oplus m\rangle$
 - So long as r does not repeat, no information is leaked about m
 - Assuming sharing an (extremely) long random string, different portions are used to encrypt different messages

Pseudorandom Function (PRF) Definition 3.23

Given an efficient, length-preserving key function
 F: {0,1}^k × {0,1}^{*} → {0,1}^{*}, we say F is a
 pseudorandom function iff for all PPT
 distinguisher D, there exists a negligible function
 negl such that

 $|\Pr[D^{Fk(\cdot)}(1^n)=1] - \Pr[D^{f(\cdot)}(1^n)=1]| \le negl(n)$

- Where k←{0,1}ⁿ is chosen uniformly at random and f is chosen uniformly at random from Func_n.
- D is given oracle access to a function, and needs to tell whether the function is a random one, or one from F.

An Encryption Scheme Using PRF

- Construction 3.24, using a PRF F
 - **Enc**_k(m): c := $\langle r, F_k(r) \oplus m \rangle$
 - where $r \leftarrow \{0,1\}^n$ is chosen at uniform random
 - **Dec**_k(c): given c= $\langle r, s \rangle$, m := F_k(r) \oplus s
 - Intuitively this is secure: so long as r is not used for different messages, $F_k(r)$ should look completely random, hence m is like being encrypted using OTP
- Theorem 3.25. If F is PRF, then Construction 3.24 is CPA-scure

Proof of Theorem 3.25

- Given any A that breaks CPA-security of Π construction
 3.24, construct a distinguisher D as follows:
 - D is given oracle access to a function g, and needs to tell from which distribution is g drawn
 - When A requests an encryption, uses $c := \langle r, g(r) \oplus m \rangle$
 - If A succeeds in guessing which of m₀ and m₁ is encrypted under the challenge ciphertext, outputs 1 (PRF), otherwise output 0 (Random)

More on Proof

• When D is given a random function f

 $- \ Pr[D^{f(\cdot)} \ (1^n)=1] \ = \ Pr[\textbf{PrivK^{cpa}}_{\textbf{A},\Lambda}=1] \ \leq \frac{1}{2} + q(n)/2^n$

- Assuming that A makes at most q(n) requests for encryption,
- We use Λ to denote Construction 3.24 with random function
- When r used in the challenge message does not appear in other messages, Pr[PrivK^{cpa}_{A,A}=1] = ¹/₂
- Prob that r appears in other challenges is $q(n)/2^n$
- When D is given a pseudorandom function
 Pr[D^{Fk(·)}(1ⁿ)=1] = Pr[PrivK^{cpa}_{A.Π} =1]
- Thus
 - $\Pr[\PrivK^{cpa}_{A,\Pi} = 1] > \frac{1}{2} + negl(n) \text{ if and only if } \\ |\Pr[D^{Fk(\cdot)}(1^n) = 1] \Pr[D^{f(\cdot)}(1^n) = 1]| > negl(n)$

Pseudorandom Permutations (PRP)

- We say that a length-preserving keyed function F: $\{0,1\}^k \times \{0,1\}^* \rightarrow \{0,1\}^*$, is a keyed permutation if and only if each F_k is a bijection
- A Pseudorandom Permutation (PRP) is a keyed permutation that is indistinguishable from a random permutation
- A Strong PRP is a keyed permutation is indistinguishable from a random permutation when the distinguisher is given access to both the function and its inverse
- We assume block ciphers are PRP.

Coming Attractions ...

- Block Cipher Construction
- Reading: Katz & Lindell: 5.1,5.2,5.3

