Cryptography CS 555

Topic 7: Stream Ciphers and CPA Security

Outline and Readings

- Outline
 - Handling variable length messages
 - Security for multiple messages
 - Stream ciphers for multiple messages
 - CPA secure
- Readings:
 - Katz and Lindell: 3.4, 3.5

Handling Variable Length Messages (Textbook, Section 3.4.2)

- A variable output-length pseudo-random generator is G(s, 1^l) that output l such that
 - Any shorter output is the prefix of the longer one
 - Fix any length, this is a pseudo-random generator
- Given such a generator, can encrypt messages of different length by choosing l to be length of the message.

Security for Multiple Encryptions (Textbook Section 3.4.3)

- How to encrypt multiple messages with one key?
 - What is wrong with using the standard way of using stream cipher to encrypt?
- How to define secure encryption with multiple messages?

Definition 3.18. Has indistinguishable Multiple Encryptions in the presence of an eavesdropper.

- Define an experiment called PrivK^{mult}(n)
 - Involving an Adversary and a Challenger
 - Instantiated with an Adv algorithm \mathcal{A} , and an encryption scheme Π = (Gen, Enc, Dec)

ChallengerAdversary
$$k \leftarrow Gen(1^n)$$
 M_0, M_1 $\mathcal{A}(1^n)$ gives two vector of $b \leftarrow_R \{0,1\}$ $C = E_k[m_b^{-1}], E_k[m_b^{-2}], \dots E_k[m_b^{-1}]$ $\mathcal{A}(1^n)$ gives two vector of $b' \in \{0,1\}$ $b' \in \{0,1\}$ $equal lengths$

PrivK^{mult} = 1 if b=b', and PrivK^{mult} = 0 if $b \neq b'$ Pr[PrivK^{mult}_{A,II}=1] $\leq \frac{1}{2} + \text{negl}(n)$

Spring 2012/Topic 7

Single Msg vs. Multiple Msgs

- Give an encryption scheme that has indistinguishable encryptions in the presence of an eavesdropper
 - i.e., secure in single message setting
- But does not have indistinguishable multiple encryptions in the presence of an eavesdropper.
 – i.e., insecure for encrypting multiple messages?
- No deterministic encryption scheme is secure for multiple messages

How to Encrypt Multiple Messages with a Stream Cipher (i.e., Pseudorandom generator)

- Method 1: Synchronized mode
 - Use a different part of the output stream to encrypt each new message
 - Sender and receiver needs to know which position is used to encrypt each message
 - Often problematic

How to Encrypt Multiple Messages with a Stream Cipher

- Method 2: Unsynchronized mode
 - Use a random Initial Vector (IV)
 - $\operatorname{\textbf{Enc}}_{k}(m) = \langle \mathsf{IV}, \, \mathsf{G}(k, \mathsf{IV}) \oplus m \rangle$
 - IV must be randomly chosen, and freshly chosen for each message
 - How to decrypt?
 - What G to use and under what assumptions on G such a scheme has indistinguishable multiple encryptions in the presence of an eavesdropper
 - What if $G(k,IV) \equiv G'(k||IV)$, where G' is a pseudorandom generator

Security of Unsynchronized Mode

Recall that

- IV is sent in clear, so is known by the adversary
- For each IV, $G(\cdot,IV)$ is assumed to be pseudorandom generator;
- Furthermore, when given multiple IVs and outputs under the same randomly chosen seed, the combined output must be pseudo-random
- Stream ciphers in practice are assumed to have the above augmented pseudorandomness property and used this way

Functions and Keyed Functions

- Consider $\mathbf{Enc}_{k}(m) = \langle IV, G(k, IV) \oplus m \rangle$
- G(k,IV) takes two inputs. This can also be viewed as a family (set) of functions, aka, a keyed function
- For each key k, we define function G_k to be $G_k(x) = G(k,x)$
- The property we desire for G is such that when k is randomly chosen, $G_k(\cdot)$ has the property that knowing $G_k(x_1)$ one cannot predict what will $G_k(x_2)$ be $x_1 \neq x_2$
 - That is, $G_k(\cdot)$ should be indistinguishable from a random function.
 - If one can predict $G_k(x)$ when given x, is the above encryption scheme secure?

Security Against Chosen Plaintext Attacks (Textbook 3.5)

- Security notions considered so far is for ciphertext-only attacks
- Modeling chosen plaintext attacks
 - Adversary may choose messages and obtain corresponding ciphertexts adaptively
 - Adaptively means that adversary may look at the ciphertext of the first chosen message, then choose the next message.
 - How to model this ability of the adversary?
 - Adversary is given an encryption oracle, which can encrypt messages but does not give out the key

The CPA Indistinguishablility Experiment: **PrivK^{cpa}**(n)

- A k is generated by Gen(1ⁿ)
- Adversary is given oracle access to Enc_k(·), and outputs a pair of equal-length messages m₀ and m₁
- A random bit b is chosen, and adversary is given Enc_k(m_b)
 - Called the challenge ciphertext
- Adversary still has oracle access to Enc_k(·), and (after some time) outputs b'
- PrivK^{cpa}(n) = 1 if b=b' (adversary wins) and =0 otherwise

CPA-secure (aka IND-CPA security)

- A private-key encryption scheme Π = (Gen, Enc, Dec) has indistinguishable encryption under a chosen-plaintext attack iff. for all PPT adversary *A*, there exists a negligible function negl such that
 - $\Pr[\mathbf{PrivK^{cpa}}_{A,\Pi}=1] \leq \frac{1}{2} + \operatorname{negl}(n)$
- No deterministic encryption scheme is CPAsecure. Why?

Properties of CPA-secure

- CPA-secure for multiple messages is equivalent to CPA-secure for a single message
- Given a fixed-length encryption scheme that is CPA-secure, we can encrypt messages of arbitrary length by encrypting different parts of messages separately

Coming Attractions ...

- Pseudorandom functions
- Reading: Katz & Lindell: 3.6

