
CS555 Spring 2012/Topic 5 1

Cryptography

CS 555

Topic 5: Pseudorandomness and Stream

Ciphers

CS555 Spring 2012/Topic 5 2

Outline and Readings

• Outline
• Stream ciphers

• LFSR

• RC4

• Pseudorandomness

• Readings:
• Katz and Lindell: 3.3, 3.4.1

CS555 Spring 2012/Topic 5 3

Stream Ciphers

• In One-Time Pad, a key is a random string of

length at least the same as the message

• Stream ciphers:

– Idea: replace “rand” by “pseudo rand”

– Use a Pseudo Random (Number) Generator

– G: {0,1}s  {0,1}n

• expand a short (e.g., 128-bit) random seed into a long

(e.g., 106 bit) string that “looks random”

– Secret key is the seed

– Naïve encryption: Ekey[M] = M  G(key)

– To encrypt more than one messages, need to be more

sophisticated.

CS555 Spring 2012/Topic 5 4

Linear Feedback Shift Register (LFSR)

• Example:

1 0 0 0



• Starting with 1000, the output stream is

– 1000 1001 1010 1111 000

• Repeat every 24 – 1 bit

• The seed is the key

CS555 Spring 2012/Topic 5 5

Linear Feedback Shift Register (LFSR)

• Example:

• zi = zi-4+zi-3 mod 2

 = 0zi-1 + 0zi-2 + 1zi-3 + 1zi-4 mod 2

• We say that stages 0 & 1 are selected.

Stage

0

Stage

1

Stage

2

Stage

3



CS555 Spring 2012/Topic 5 6

Properties of LFSR

• Fact: given an L-stage LFSR, every output

sequence is periodic if and only if stage 0 is

selected

• Definition: An L-stage LFSR is maximum-length if

some initial state will results a sequence that

repeats every 2L  1 bit

• Whether an LFSR is maximum-length or not

depends on which stages are selected.

CS555 Spring 2012/Topic 5 7

Cryptanalysis of LFSR

• Vulnerable to know-plaintext attack

– A LFSR can be described as

 zm+i = j=0
m-1 cj zi+j mod 2

– Knowing 2m output bits, one can

• construct m linear equations with m unknown variables

c0, …, cm-1

• recover c0, …, cm-1

CS555 Spring 2012/Topic 5 8

Cryptanalysis of LFSR

• Given a 4-stage LFSR, we know

– z4=z3c3+z2c2+z1c1+z0c0 mod 2

– z5=z4c3+z3c2+z2c1+z1c0 mod 2

– z6=z5c3+z4c2+z3c1+z2c0 mod 2

– z7=z6c3+z5c2+z4c1+z3c0 mod 2

• Knowing z0,z1,…,z7, one can compute

c0,c1,c2,c4.

• In general, knowing 2n output bits, one can

solve an n-stage LFSR

czczcz jjj   2211

CS555 Spring 2012/Topic 5 9

The RC4 Stream Cipher

• A proprietary cipher owned by RSA, designed by

Ron Rivest in 1987.

• Became public in 1994.

• Simple and effective design.

• Variable key size (typical 40 to 256 bits),

• Output unbounded number of bytes.

• Widely used (web SSL/TLS, wireless WEP).

• Extensively studied, not a completely secure

PRNG, when used correctly, no known attacks

exist

Spring 2012/Topic 5 10

The RC4 Cipher: Encryption

• The cipher internal state consists of
– a 256-byte array S, which contains a permutation of 0

to 255

• total number of possible states is 256!  21700

– two indexes: i, j

i = j = 0

Loop

i = (i + 1) (mod 256)

j = (j + S[i]) (mod 256)

swap(S[i], S[j])

output (S[i] + S[j]) (mod 256)

End Loop

CS555

Spring 2012/Topic 5 11

RC4 Initialization

• Generate the initial permutation from a key k;
maximum key length is 2048 bits

• First divide k into L bytes

• Then
for i = 0 to 255 do

S[i] = i

j = 0

for i = 0 to 255 do

j = (j + S[i] + k[i mod L])(mod 256)

swap (S[i], S[j])

CS555

Randomness and

Pseudorandomness

• For a stream cipher (PRNG) is good, it needs to be

“pseudo-random”.

• Random is not a property of one string

– Is “000000” “less random” than “011001”?

– Random is the property of a distribution, or a random variable

drawn from the distribution

• Similarly, pseudo-random is property of a distribution

• We say that a distribution D over strings of length-l is

pseudorandom if it is indistinguishable from a random

distribution.

• We use “random string” and “pseudorandom string” as

shorthands

CS555 Spring 2012/Topic 5 12

Distinguisher

• A distinguisher D for two distributions works as

follows:

– D is given one string sampled from one of the two

distributions

– D tries to guess which distribution it is from

– D succeeds if guesses correctly

• How to distinguish a random binary string of 256

bits from one generated using RC4 with 128

bites seed?

CS555 Spring 2012/Topic 5 13

Pseudorandom Generator

Definition (Asymptotic version)

• Definition 3.14. We say an algorithm G, which
on input of length n outputs a string of length l(n),

is a pseudorandom generator if

1. For every n, l(n) > n

2. For each PPT distinguisher D, there exists a

negligible function negl such that

 |Pr[D(r)=1 – Pr[D(G(s))=1|  negl(n)

Where r is chosen at uniformly random from {0,1} l(n)

and s is chosen at uniform random from {0,1}s

CS555 Spring 2012/Topic 5 14

Security of using Stream Cipher for

Encrpytion

• Consider the construction  of using G(k)m as

the encryption of m

• Theorem 3.16. If G is a pseudorandom

generator, then  has indistinguishable

encryptions in the presence of an eavesdropper.

• Proof idea?

CS555 Spring 2012/Topic 5 15

Proof of Theorem 3.16

• If  does not have indistinguishable encryptions in the

presence of an eavesdropper; then there exists

adversary A that can break  with non-negligible prob;

we construct a distinguisher D as follows

CS555 Spring 2012/Topic 5 16

A

D

w

C = w Mb

b’ 1 if b=b’;

0 otherwise

M0, M1 b {0,1}

A Bit More Details on the Proof

• Let (n) be |Pr[PrivKeav
A,=1] - ½ |

• Then |Pr[D(r)=1 – Pr[D(G(s))=1|

 = | ½ - Pr[PrivKeav
A,=1] | = (n)

CS555 Spring 2012/Topic 5 17

CS555 Spring 2012/Topic 5 18

Recap of Pseudo Random

Generator
• Useful for cryptography and for simulation

– Stream ciphers, generating session keys

• The same seed always gives the same output stream

• Simulation requires uniform distributed sequences

– E.g., having a number of statistical properties

• Definition 3.14 is equivalent to requiring unpredictable

sequences

– satisfies the "next-bit test“: given consecutive sequence of bits

output (but not seed), next bit must be hard to predict

• Some PRNG’s are weak: knowing output sequence of

sufficient length, can recover key.

– Do not use these for cryptographic purposes

CS555 Spring 2012/Topic 5 19

Coming Attractions …

• Number Theory Basics

• Reading: Katz & Lindell: 7.1

