Cryptography CS 555

Topic 4: Computational Approach to Cryptography

Outline and Readings

- Outline
 - Principles of Modern Cryptography
 - Computational Security
 - Ciphertext indistinguishability security

- Readings:
 - Katz and Lindell: 1.4, 3.1, 3.2

Kerckhoffs's Principle

• Kerckhoffs's Principle:

- The cipher method must not be required to be secret, and it must be able to fall into the hands of the enemy without inconvenience
- Shannon's maxim: "The enemy knows the system."
- Open design; Security by obscurity doesn't work
- Should assume that the adversary knows the algorithm; the only secret the adversary is assumed to not know is the key

- Reverse engineering, careful review of algorithm, etc.

• What is the difference between the algorithm and the key?

Formulation of Exact Definitions

- Formal definitions of security are essential prerequisites of cryptography
 - Design: without a definition, doesn't know whether a design achieves it
 - Usage: without a definition, doesn't know whether using a crypto primitive in a setting is suitable
 - Study: when comparing different schemes, need to know what kinds of security they provide

What Does A Security Definition Looks Like?

- Define what is insecurity (i.e., what is considered to be a break)
- Define what is the power of the adversary
- A cryptographic scheme for a given task is secure if no adversary of a specific power can achieve a specified break.

Defining Secure Encryption

- Adversary should not be able to
 - 1. Recover the key
 - 2. Find the plaintext corresponding to a ciphertext
 - 3. Cannot determine any character of the plaintext
 - 4. Can derive any meaningful information about the plaintext
 - 5. Can compute any function of the plaintext

Adversarial Models for Ciphers

- The language of the plaintext and the nature of the cipher are assumed to be known to the adversary.
- Ciphertext-only attack: The adversary knows only a number of ciphertexts.
- Known-plaintext attack: The adversary knows some pairs of ciphertext and corresponding plaintext.
- Chosen-plaintext attack: The adversary can choose a number of messages and obtain the ciphertexts
- Chosen-ciphertext attack: The adversary can choose a number of ciphertexts and obtain the plaintexts.

What kinds of attacks have we considered so far? When would these attacks be relevant in wireless communications?

Reliance on Precise Assumptions

- Assumptions (under which a scheme is secure) must be precisely stated
 - To validate the assumption
 - To compare different schemes; it is desirable to rely on weaker assumptions
 - To facilitate formal security proofs

How to Tell Whether a Definition is Good

- Needs to tell whether the mathematical formulation matches the real world situation
 - Whether in real world the adversary have more power.
 - E.g., power analysis attacks, side channel attacks
 - Whether the adversary is able to achieve a different goal, which should be considered to be a break
 - E.g., data privacy: k-anonymity,
- Use the following tools
 - Appeal to intuition
 - Prove equivalence
 - Use examples

Rigorous Proofs of Security

- Intuitions can often be wrong when considering security/cryptography
 - Bugs/errors can be very subtle
- The reductionist approach
- A Theorem looks like: Assume that X is true (e.g., certain problem is hard), Construction Y is secure according to the given definition,
- Proof looks like: Given an adversary A that breaks Y according to the definition, using A we can construct something that falsifies X

Towards Computational Security

- Perfect secrecy is too difficult to achieve.
- The computational approach uses two relaxations:
 - Security is only preserved against efficient (computationally bounded) adversaries
 - Adversary can only run in feasible amount of time
 - Adversaries can potentially succeed with some very small probability (that we can ignore the case it actually happens)

The Concrete Approach

- Quantifies the security by explicitly bounding the maximum success probability of adversary running with certain time:
 - "A scheme is (t,ϵ) -secure if **every** adversary running for time at most t succeeds in breaking the scheme with probability at most ϵ "
 - One may also bound t number of computations, CPU cycles, etc.
 - Example: a strong encryption scheme with n-bit keys may be expected to be (t, t/2ⁿ)-secure.
 - N=128, t=2⁶⁰, then ε = 2⁻⁶⁸. (# of seconds since big bang is 2⁵⁸)
- Makes more sense with symmetric encryption schemes.

The Asymptotic Approach

- A cryptosystem has a security parameter
 - E.g., number of bits in the RSA algorithm (1024,2048,...)
 - Typically, the key depends on the security parameter
 - The bigger the security parameter, the longer the key, the more time it takes to use the cryptosystem, and the more difficult it is to break the scheme
 - The crypto system runs in time polynomial in the security parameter
 - Security parameter is often written as an input 1ⁿ
 - "A scheme is secure if every PPT adversary succeeds in breaking the scheme with only negligible probability"

Efficient Computation

- Efficient computation is equated with Probabilistic Polynomial Time (PPT)
 - The algorithm has access to sequence of unbiased coins
 - Often times, the time is polynomial in the security parameter
- Both the crypto scheme and the adversary are assumed to be PPT

Negligible Probability

- Want the adversary's success probability to be small, but the probability is a function of the security parameter n
- Wants to say that a function f(n) is small when n grows.
 - What functions is very small when n grows?
 - 1/f(n) should be a function that increases fast with n
- A function f is negligible if for every polynomial p(.) there exists an N such that for all integers n>N, it holds that f(n)<1/p(n)

Examples of Negligible Functions

• Examples:

- 2⁻ⁿ; 2^{-sqrt(n}); n^{-log n}
- Given two negligible functions f and g
 - The function f+g is negligible
 - The function p(n) f(n) is negligible for any polynomial p(n)
- Given a negligible function f, one can choose a security parameter n that is not too large to make f(n) so small that it can be safely ignored

Symmetric-key Encryption

- A symmetric-key encryption scheme is comprised of three algorithms
 - Gen Input: security parameter 1ⁿ
 - $k \leftarrow \text{Gen}(1^n)$ Assume, wlog, that |k| > n
 - Enc Input: key k, plaintext m
 - c ← **Enc**_k(*m*)
 - **Dec** Input: key *k*, ciphertext *c*
 - m := **Dec**_k(m)
 - Requirement: $\forall k \forall m \ [\mathbf{Dec}_k(\mathbf{Enc}_k(m)) = m]$
 - If for k output by Gen(1n), Enc is defined only for messages of length l(n), this is called a fixed-length encrpytion scheme

Defining Security

- Desire "semantic security", i.e., having access to the ciphertext does not help adversary to compute any function of the plaintext.
 - Difficult to use
- Equivalent notion: Adversary cannot distinguish between the ciphertexts of two plaintexts

Recall: Perfect Secrecy via Adversarial Indistinguishability

- Define an experiment called PrivKeav:
 - Involving an Adversary and a Challenger
 - Instantiated with an Adv algorithm A, and an encryption scheme Π = (Gen, Enc, Dec)

PrivK^{eav} = 1 if b=b', and PrivK^{eav} = 0 if $b \neq b'$ For every adversary, PrivK^{eav} = 1 holds with prob 1/2

Spring 2012/Topic 3

Towards IND Security

- Modify the formulation of perfect secrecy using **PrivK**^{eav} in the following ways
 - Adversaries run in polynomial time
 - Adversaries might determine which message is encrypted with probability negligibly better than ¹/₂
 - Require two messages m_0 and m_1 to be the same length
 - Most encryption schemes do not hide length of messages

IND Security

- An encryption scheme II = (Gen, Enc, Dec) has indistinguishable encryptions in the presence of an eavesdropper if for all PPT adversary A, there exists a negligible function negl such that
 - $Pr[PrivK^{eav}_{A,\Pi}=1] \leq \frac{1}{2} + negl(n)$
- Equivalently, any adversary would behave the same way whether it sees the encryption of m₀ or m₁
 - | $Pr[output(\mathbf{PrivK^{eav}}_{A,\Pi}(n,0)) = 1]$ - $Pr[output(\mathbf{PrivK^{eav}}_{A,\Pi}(n,1)) = 1] | \le negl(n)$

Coming Attractions ...

- Pseudorandomness
- Pseudo Random Number Generator
- Stream Ciphers
- Reading: Katz & Lindell: 3.3 and 3.4

