
CS555 Spring 2012/Topic 4 1 

Cryptography 

CS 555 

Topic 4: Computational Approach to 

Cryptography 



CS555 Spring 2012/Topic 4 2 

Outline and Readings 

• Outline 
• Principles of Modern 

Cryptography 

• Computational Security 

• Ciphertext indistinguishability 

security 

 

• Readings: 
• Katz and Lindell: 1.4, 3.1, 3.2 

 



CS526 Fall 2011/Topic 2 3 

Kerckhoffs's Principle 

• Kerckhoffs's Principle: 
– The cipher method must not be required to be secret, 

and it must be able to fall into the hands of the enemy 
without inconvenience 

• Shannon's maxim: "The enemy knows the system.“ 

• Open design;   Security by obscurity doesn’t work 

• Should assume that the adversary knows the 
algorithm; the only secret the adversary is assumed 
to not know is the key 
– Reverse engineering, careful review of algorithm, etc. 

• What is the difference between the algorithm and 
the key? 



Formulation of Exact Definitions 

• Formal definitions of security are essential 

prerequisites of cryptography 

– Design: without a definition, doesn’t know whether a 

design achieves it 

– Usage: without a definition, doesn’t know whether 

using a crypto primitive in a setting is suitable 

– Study: when comparing different schemes, need to 

know what kinds of security they provide 

CS555 Spring 2012/Topic 4 4 



What Does A Security Definition 

Looks Like? 

• Define what is insecurity (i.e., what is considered 

to be a break) 

• Define what is the power of the adversary 

 

• A cryptographic scheme for a given task is 

secure if no adversary of a specific power can 

achieve a specified break. 

CS555 Spring 2012/Topic 4 5 



Defining Secure Encryption 

• Adversary should not be able to 

1. Recover the key 

2. Find the plaintext corresponding to a ciphertext 

3. Cannot determine any character of the plaintext 

4. Can derive any meaningful information about the 

plaintext 

5. Can compute any function of the plaintext 

CS555 Spring 2012/Topic 4 6 



CS526 Fall 2011/Topic 2 7 

Adversarial Models for Ciphers 

• The language of the plaintext and the nature of the 
cipher are assumed to be known to the adversary.  

• Ciphertext-only attack: The adversary knows only a 
number of ciphertexts.  

• Known-plaintext attack: The adversary knows some 
pairs of ciphertext and corresponding plaintext.  

• Chosen-plaintext attack: The adversary can choose 
a number of  messages and obtain the ciphertexts 

• Chosen-ciphertext attack: The adversary can 
choose a number of ciphertexts and obtain the 
plaintexts. 

 

 
What kinds of attacks have we considered so far? 

When would these attacks be relevant in wireless communications? 



Reliance on Precise Assumptions 

• Assumptions (under which a scheme is secure) 

must be precisely stated 

– To validate the assumption 

– To compare different schemes; it is desirable to rely 

on weaker assumptions 

– To facilitate formal security proofs 

CS555 Spring 2012/Topic 4 8 



How to Tell Whether a Definition 

is Good 

• Needs to tell whether the mathematical 

formulation matches the real world situation 

– Whether in real world the adversary have more power. 

• E.g., power analysis attacks, side channel attacks 

– Whether the adversary is able to achieve a different 

goal, which should be considered to be a break 

• E.g., data privacy: k-anonymity,  

• Use the following tools 

– Appeal to intuition 

– Prove equivalence 

– Use examples 

CS555 Spring 2012/Topic 4 9 



Rigorous Proofs of Security 

• Intuitions can often be wrong when considering 

security/cryptography  

– Bugs/errors can be very subtle 

• The reductionist approach 

• A Theorem looks like: Assume that X is true 

(e.g., certain problem is hard), Construction Y is 

secure according to the given definition, 

• Proof looks like: Given an adversary A that 

breaks Y according to the definition, using A we 

can construct something that falsifies X 

CS555 Spring 2012/Topic 4 10 



Towards Computational Security 

• Perfect secrecy is too difficult to achieve. 

• The computational approach uses two 

relaxations: 

– Security is only preserved against efficient 

(computationally bounded) adversaries 

• Adversary can only run in feasible amount of time 

– Adversaries can potentially succeed with some very 

small probability (that we can ignore the case it 

actually happens) 

CS555 Spring 2012/Topic 4 11 



The Concrete Approach 

• Quantifies the security by explicitly bounding the maximum 

success probability of adversary running with certain time: 

– “A scheme is (t,)-secure if every adversary running for 

time at most t succeeds in breaking the scheme with 

probability at most ” 

• One may also bound t number of computations, CPU 

cycles, etc. 

– Example: a strong encryption scheme with n-bit keys 

may be expected to be (t, t/2n)-secure. 

• N=128, t=260, then = 2-68.  (# of seconds since big bang is 

258) 

• Makes more sense with symmetric encryption schemes. 

CS555 Spring 2012/Topic 4 12 



The Asymptotic Approach 

• A cryptosystem has a security parameter 

– E.g., number of bits in the RSA algorithm (1024,2048,…) 

– Typically, the key depends on the security parameter 

– The bigger the security parameter, the longer the key, 

the more time it takes to use the cryptosystem, and the 

more difficult it is to break the scheme 

– The crypto system runs in time polynomial in the security 

parameter 

• Security parameter is often written as an input 1n 

– “A scheme is secure if every PPT adversary succeeds in 

breaking the scheme with only negligible probability” 

CS555 Spring 2012/Topic 4 13 



Efficient Computation 

• Efficient computation is equated with 

Probabilistic Polynomial Time (PPT) 

– The algorithm has access to sequence of unbiased 

coins 

– Often times, the time is polynomial in the security 

parameter 

 

• Both the crypto scheme and the adversary are 

assumed to be PPT 

 

 
CS555 Spring 2012/Topic 4 14 



Negligible Probability 

• Want the adversary’s success probability to be 

small, but the probability is a function of the 

security parameter n 

• Wants to say that a function f(n) is small when n 

grows. 

– What functions is very small when n grows? 

– 1/f(n) should be a function that increases fast with n 

• A function f is negligible if for every polynomial 

p() there exists an N such that for all integers 

n>N, it holds that f(n)<1/p(n) 

CS555 Spring 2012/Topic 4 15 



Examples of Negligible Functions 

• Examples: 

– 2-n;  2-sqrt(n);  n-log n 

• Given two negligible functions f and g 

– The function f+g is negligible 

– The function p(n) f(n) is negligible for any polynomial 

p(n) 

• Given a negligible function f, one can choose a 

security parameter n that is not too large to make 

f(n) so small that it can be safely ignored 

 

 
CS555 Spring 2012/Topic 4 16 



Symmetric-key Encryption  

• A symmetric-key encryption scheme is comprised of 

three algorithms 

– Gen  Input: security parameter 1n 

• k  Gen(1n) Assume, wlog, that |k| > n 

– Enc  Input:  key k, plaintext m 

• c  Enck(m) 

– Dec  Input: key k, ciphertext c 

• m := Deck(m) 

 

 

– If for k output by Gen(1n), Enc is defined only for 
messages of length l(n), this is called a fixed-length 

encrpytion scheme 
CS 555 Topic 1 17 

Requirement:  k m  [ Deck(Enck(m)) = m ] 



Defining Security 

• Desire “semantic security”, i.e., having access to 

the ciphertext does not help adversary to 

compute any function of the plaintext. 

– Difficult to use 

 

• Equivalent notion: Adversary cannot distinguish 

between the ciphertexts of two plaintexts 

CS555 Spring 2012/Topic 4 18 



Recall: Perfect Secrecy via 

Adversarial Indistinguishability 

• Define an experiment called PrivKeav:  

– Involving an Adversary and a Challenger 

– Instantiated with an Adv algorithm A, and an 

encryption scheme  = (Gen, Enc, Dec)  

 

CS555 Spring 2012/Topic 3 19 

Challenger Adversary 

k  Gen() 

b R {0,1} 

chooses m0, m1 M m0, m1 

C=Ek[mb] 

b’ {0,1} 

PrivKeav = 1 if b=b’, and PrivKeav = 0 if  b b’ 

For every adversary, PrivKeav = 1 holds with prob 1/2 



Towards IND Security 

• Modify the formulation of perfect secrecy using 

PrivKeav in the following ways 

– Adversaries run in polynomial time 

– Adversaries might determine which message is 

encrypted with probability negligibly better than ½ 

– Require two messages m0 and m1 to be the same 

length 

• Most encryption schemes do not hide length of 

messages 

CS555 Spring 2012/Topic 4 20 



IND Security 

• An encryption scheme  = (Gen, Enc, Dec) has 

indistinguishable encryptions in the presence of an 

eavesdropper if for all PPT adversary A, there exists a 

negligible function negl such that  

• Pr[PrivKeav
A,=1]   ½ + negl(n) 

 

• Equivalently, any adversary would behave the same way 

whether it sees the encryption of m0 or m1 

• | Pr[output(PrivKeav
A,(n,0)) = 1] -       

 Pr[output(PrivKeav
A,(n,1)) = 1] |  negl(n)  

 

CS555 Spring 2012/Topic 4 21 



CS555 Spring 2012/Topic 4 22 

Coming Attractions … 

• Pseudorandomness 

• Pseudo Random Number 

Generator 

• Stream Ciphers 

 

• Reading: Katz & Lindell: 3.3 and 

3.4 
 


