Cryptography CS 555

Topic 2: Evolution of Classical Cryptography

Lecture Outline

- Basics of probability
- Vigenere cipher.
- Attacks on Vigenere: Kasisky Test and Index of Coincidence
- Cipher machines: The Enigma machine.
- Required readings:
 - Katz & Lindell: 1.1 to 1.3
- Recommended readings
 - The Code Book by Simon Singh

Begin Math

Random Variable

Definition

A **discrete random variable**, **X**, consists of a finite set \mathcal{X} , and a probability distribution defined on \mathcal{X} . The probability that the random variable **X** takes on the value x is denoted **Pr**[**X** =x]; sometimes, we will abbreviate this to **Pr**[x] if the random variable **X** is fixed. It must be that

$$0 \le \Pr[x]$$
 for all $x \in \mathcal{X}$
 $\sum_{x \in \mathcal{X}} \Pr[x] = 1$

Example of Random Variables

- Let random variable D₁ denote the outcome of throw one dice (with numbers 0 to 5 on the 6 sides) randomly, then D={0,1,2,3,4,5} and Pr[D₁=i] = 1/6 for 0≤ i ≤ 5
- Let random variable D₂ denote the outcome of throw a second such dice randomly
- Let random variable S₁ denote the sum of the two dices, then S ={0,1,2,...,10}, and Pr[S₁=0] = Pr[S₁=10] = 1/36 Pr[S₁=1] = Pr[S₁=9] = 2/36 = 1/18
- Let random variable S₂ denote the sum of the two dices modulo 6, what is the distribution of S₂

. . .

Relationships between Two Random Variables

Definitions

Assume **X** and **Y** are two random variables,

then we define:

- joint probability: Pr[x, y] is the probability that
 X takes value x and Y takes value y.
- conditional probability: Pr[x|y] is the probability that X takes on the value x given that Y takes value y.

 $\mathbf{Pr}[\mathbf{x}|\mathbf{y}] = \mathbf{Pr}[\mathbf{x}, \mathbf{y}] / \mathbf{Pr}[\mathbf{y}]$

independent random variables: X and Y are said to be independent if Pr[x,y] = Pr[x]P[y], for all x ∈ X and all y ∈ Y.

Examples

- Joint probability of D₁ and D₂ for 0≤i, j≤5, Pr[D₁=i, D₂=j] = ?
- What is the conditional probability Pr[D₁=i | D₂=j] for 0≤i, j≤5?
- Are **D₁** and **D₂** independent?
- Suppose D₁ is plaintext and D₂ is key, and S₁ and S₂ are ciphertexts of two different ciphers, which cipher would you use?

Examples to think after class

- What is the joint probability of **D₁** and **S₁**?
- What is the joint probability of D₂ and S₂?
- What is the conditional probability Pr[S₁=s | D₁=i] for 0≤i≤5 and 0≤s≤10?
- What is the conditional probability Pr[D₁=i | S₂=s] for 0≤i≤5 and 0≤s≤5?
- Are **D**₁ and **S**₁ independent?
- Are **D**₁ and **S**₂ independent?

Bayes' Theorem

Bayes' Theorem If P[y] > 0 then

$$P[x \mid y] = \frac{P[x]P[y \mid x]}{P[y]}$$

Corollary

X and Y are independent random variables iff P[x|y] = P[x], for all $x \in X$ and all $y \in Y$.

End Math

Ways to Enhance the Substitution Cipher against Frequency Analysis

- Using nulls
 - e.g., using numbers from 1 to 99 as the ciphertext alphabet, some numbers representing nothing and are inserted randomly
- Deliberately misspell words
 - e.g., "Thys haz thi ifekkt off diztaughting thi ballans off frikwenseas"
- Homophonic substitution cipher
 - each letter is replaced by a variety of substitutes
- These make frequency analysis more difficult, but not impossible

Towards the Polyalphabetic Substitution Ciphers

- Main weaknesses of monoalphabetic substitution ciphers
 - In ciphertext, different letters have different frequency
 - each letter in the ciphertext corresponds to only one letter in the plaintext letter
- Idea for a stronger cipher (1460's by Alberti)
 - Use more than one cipher alphabet, and switch between them when encrypting different letters
 - As result, frequencies of letters in ciphertext are similar
- Developed into a practical cipher by Vigenère (published in 1586)

The Vigenère Cipher

Treat letters as numbers: [A=0, B=1, C=2, ..., Z=25] Number Theory Notation: $Z_n = \{0, 1, ..., n-1\}$ Definition:

Given m, a positive integer, $P = C = (Z_{26})^n$, and $K = (k_1, k_2, ..., k_m)$ a key, we define:

Encryption:

 $e_k(p_1, p_2... p_m) = (p_1+k_1, p_2+k_2...p_m+k_m) \pmod{26}$ Decryption:

 $d_k(c_1, c_2... c_m) = (c_1-k_1, c_2-k_2... c_m-k_m) \pmod{26}$ Example:

Plaintext:CRYPTOGRAPHYKey:LUCKLUC KLUCKCiphertext:NLAZEIIBLJJI

Security of Vigenere Cipher

- Vigenere masks the frequency with which a character appears in a language: one letter in the ciphertext corresponds to multiple letters in the plaintext. Makes the use of frequency analysis more difficult.
- Any message encrypted by a Vigenere cipher is a collection of as many shift ciphers as there are letters in the key.

Vigenere Cipher: Cryptanalysis

- Find the length of the key.
- Divide the message into that many simple substitution encryptions.
- Solve the resulting simple substitutions.
 - how?

How to Find the Key Length?

- For Vigenere, as the length of the keyword increases, the letter frequency shows less English-like characteristics and becomes more random.
- Two methods to find the key length:
 - Kasisky test
 - Index of coincidence (Friedman)

Kasisky Test

- Note: two identical segments of plaintext, will be encrypted to the same ciphertext, if the they occur in the text at the distance Δ, (Δ=0 (mod m), m is the key length).
- Algorithm:
 - Search for pairs of identical segments of length at least 3
 - Record distances between the two segments: $\Delta 1$, $\Delta 2$, ...
 - m divides gcd(Δ 1, Δ 2, ...)

Example of the Kasisky Test

Key	K	Ι	Ν	G	K	Ι	Ν	G	K	Ι	Ν	G	K	Ι	Ν	G	Κ	Ι	Ν	G	K	Ι	Ν	G
PT	t	h	е	S	u	n	а	n	d	t	h	е	m	а	n	i	n	t	h	е	m	0	0	n
СТ	D	Ρ	R	Y	Ε	V	Ν	Т	Ν	В	U	K	W	Ι	A	0	Х	В	U	K	W	W	В	Т

Index of Coincidence (Friedman)

Informally: Measures the probability that two random elements of the n-letters string x are identical.

Definition:

Suppose $x = x_1 x_2 ... x_n$ is a string of n alphabetic characters. Then $I_c(x)$, the index of coincidence is:

$$I_c(x) = P(x_i = x_j)$$

when *i* and *j* are uniformly randomly chosen from [1..n]

Index of Coincidence (cont.)

- Consider the plaintext x, and f₀, f₁, ... f₂₅ are the frequencies with which A, B, ... Z appear in x and p₀, p₁, ... p₂₅ are the probabilities with which A, B, ... Z appear in x.
 - That is $p_i = f_i / n$ where n is the length of x
- We want to compute $I_c(x)$.
- Given frequencies of all letters in an alphabet, index of coincidence is a feature of the frequencies
 - It does not change under substitution

Index of Coincidence (cont.)

- We can choose two elements out of the string of size n in $\binom{n}{2}$ ways
- For each i, there are $\binom{f_i}{2}$ ways of choosing the elements to be i

$$I_{C}(x) = \frac{\sum_{i=0}^{S} \binom{f_{i}}{2}}{\binom{n}{2}} = \frac{\sum_{i=0}^{S} f_{i}(f_{i}-1)}{n(n-1)} \approx \frac{\sum_{i=0}^{S} f_{i}^{2}}{n^{2}} = \sum_{i=0}^{S} p_{i}^{2}$$

Index of Coincidence of English

• For English, S = 25 and p_i can be estimated

Letter	p _i						
А	.082	Н	.061	Ο	.075	V	.010
В	.015	Ι	.070	Р	.019	W	.023
С	.028	J	.002	Q	.001	X	.001
D	.043	K	.008	R	.060	Y	.020
Е	.127	L	.040	S	.063	Ζ	.001
F	.022	Μ	.024	Т	.091		
G	.020	N	.067	U	.028		

$$I_c(x) = \sum_{i=0}^{i=25} p_i^2 = 0.065$$

Topic 2

Finding the Key Length

 $y = y_1y_2...y_{n_1}$, assum m is the key length, write y vertically in an m-row array

Finding out the Key Length

 If m is the key length, then the text ``looks like'' English text

$$I_c(y_i) \approx \sum_{i=0}^{i=25} p_i^2 = 0.065 \quad \forall 1 \le i \le m$$

 If m is not the key length, the text ``looks like'' random text and:

$$I_c \approx \sum_{i=0}^{i=25} (\frac{1}{26})^2 = 26 \times \frac{1}{26^2} = \frac{1}{26} = 0.038$$

Rotor Machines

- Basic idea: if the key in Vigenere cipher is very long, then the attacks won't work
- Implementation idea: multiple rounds of substitutions
- A machine consists of multiple cylinders
 - Each character is encrypted by multiple cylinders
 - Each cylinder has 26 states, at each state it is a substitution cipher
 - Each cylinder rotates to change states according to different schedule

Rotor Machines

- A m-cylinder rotor machine has
 - 26^m different substitution ciphers
 - $26^3 = 17576$
 - $26^4 = 456,976$
 - $25^5 = 11,881,376$

Earliest Enigma Machine

- Use 3 scramblers (motors): 17576
 substitutions
- 3 scramblers can be used in any order: 6 combinations
- Plug board: allowed 6 pairs of letters to be swapped before the encryption process started and after it ended.

History of the Enigma Machine

- Patented by Scherius in 1918
- Widely used by the Germans from 1926 to the end of second world war
- First successfully broken by the Polish's in the thirties by exploiting the repeating of the message key
- Then broken by the UK intelligence during the WW II

Coming Attractions ...

- Information-Theoretic secrecy (Perfect secrecy), One-Time Pad
- Recommended reading for next lecture: Katz and Lindell: Chapter 2

