Symbolic and Concolic
Execution of Programs

Information Security, CS 526

Omar Chowdhury

Reading for this lecture

« Symbolic execution and program testing - James King

« KLEE: Unassisted and Automatic Generation of High-
Coverage Tests for Complex Systems Programs -
Cadar et. al.

» Symbolic Execution for Software Testing: Three
Decades Later - Cadar and Sen

» A Few Billion Lines of Code Later Using Static Analysis
to Find Bugs in the Real World - Engler et. al.

« DART: Directed Automated Random Testing -
Godefroid et. al.

« CUTE: A Concolic Unit Testing Engine for C - Sen et. al.

10/7/2015 Information Security

http://madhu.cs.illinois.edu/cs598-fall10/king76symbolicexecution.pdf
http://www.doc.ic.ac.uk/~cristic/papers/klee-osdi-08.pdf
http://www.doc.ic.ac.uk/~cristic/papers/klee-osdi-08.pdf
http://www.doc.ic.ac.uk/~cristic/papers/klee-osdi-08.pdf
http://cacm.acm.org/magazines/2013/2/160161-symbolic-execution-for-software-testing/fulltext
http://cacm.acm.org/magazines/2013/2/160161-symbolic-execution-for-software-testing/fulltext
http://web.stanford.edu/~engler/BLOC-coverity.pdf
http://web.stanford.edu/~engler/BLOC-coverity.pdf
http://research.microsoft.com/en-us/um/people/pg/public_psfiles/pldi2005.pdf
http://mir.cs.illinois.edu/marinov/publications/SenETAL05CUTE.pdf
http://mir.cs.illinois.edu/marinov/publications/SenETAL05CUTE.pdf
http://mir.cs.illinois.edu/marinov/publications/SenETAL05CUTE.pdf
http://mir.cs.illinois.edu/marinov/publications/SenETAL05CUTE.pdf

~ What s the goal?

S5LVerifySignedServerkKeyExchange (SSLContext *ctx, bool isRsa, SSLBuffer signedParams,
uvint8_t *signature, UIntl6 signaturelLen)
i

055tatus err;

Oo

S..e
({err = 55LHash5HA1.ude“*{&hashEix, &serverRandom)) != @)
fail;
({err = S5LHash5! pedte(&hashCtx, &signedParams)) != @)
fail;
fail;
{{err = S5LHashSHALl. final(&hashCtx, &hashOut)) != @)

faits Never gets called
(but needed to be)...

err = ss1RawVerify(ctx,
ctx—=peerPubkey,
dataToSign,
dataToSignLen,
signature,
signatureLen) ;

(err) {
sslErrorLog("S5LDecodeSignedServerkKeyExchange: sslRawVerify *
"returned Sdyn", (int)err):
fail;
+

fail: Despite the name, always
SSLFreeBuffer(&sionedd " n
S eLFrecBuffar (f returns "it's OKI!!!

err;

10/7/2015 Information Security

Testing

» Majority of the testing approaches are
manual

* Time consuming process
* Error-prone
* Incomplete

* Depends on the quality of the test cases
or inputs

* Provides little in terms of coverage

Obvious Questions?

10/7/2015 Information Secur ity

Background: SAT

Given a propositional formula in CNF, find if
there exists an assignment to Boolean

variables that makes the formula true:

literals
/]

., = (bvc) [

cIauses<‘a)2 = (may —d)
‘@, = (—=bv d)

SATisfying
P = O N Wy N\ W3 ﬂssignment!
A = {a=0, b=1, ¢=0, d=1} ~ |

Background: SMT

SMT: Satisfiability Modulo Theories

Input: a first-order formula ¢ over background
theory

Output: is ¢ satisfiable?
« does ¢ have a model?
* |Is there a refutation of ¢ = proof of —¢?

For most SMT solvers: ¢ is a ground formula

« Background theories: Arithmetic, Arrays, Bit-vectors,
Algebraic Datatypes

« Most SMT solvers support simple first-order sorts

Background: SMT

o[b + 2 = c|and [f{read(write(a,b,3)| c-2)

—-

Arithmetic l Array Theory l

Uninterpreted
Function

10/7/2015 Information Security 8

Example SMT Solving

- b+2=c and f(read(write(a,b,3), c-2)) # f(c-b+1)
[Substituting ¢ by b+2]

b+ 2 = c and f(read(write(a,b,3), b+2-2)) # f(b+2-
b+1)

[Arithmetic simplification]

b+ 2 = c and f(read(write(a,b,3), b)) # f(3)
[Applying array theory axiom-

forall a,i,v:read(write(a,i,v), i) = V]

. b+2 = ¢ and f(3) = f(3) [NOT SATISFIABLE]

10/7/2015 Information Security 9

Program Validation Approaches
static Analysis @) @

Verification

Concolic Execution OExtended Static Analysis
& White-box . . .
Fuzzing ‘ Y Symbolic Execution

Confidence

Ad-hoc testing

Cost (programmer effort, time, expertise)

10/7/2015 Information Security

10

Automatic Test Generation

Symbolic & Concolic Execution

 How do we automatically generate test inputs

that induce the program to go in different
paths?

* Intuition:
 Divide the whole possible input space of the
program into equivalent classes of input.

* For each equivalence class, all inputs in that

equivalence class will induce the same program
path.

» Test one input from each equivalence class.

Symbolic Execution — History

* 1976: A system to generate test data and
symbolically execute programs (Lori Clarke)

» 1976: Symbolic execution and program testing
(James King)

» 2005-present: practical symbolic execution
Using SMT solvers

Heuristics to control exponential explosion
Heap modeling and reasoning about pointers
Environment modeling

Dealing with solver limitations

Symbolic Execution (contd.)

Void func(int x, int y){
intz=2*y;

if(z == x){
if (x>y+10)
ERROR
}
}
int main(){

int x = sym_input();
inty = sym_input();
func(x, y);

return O;

SMT solver

Path Satisfying
constraint Assignment

Symbolic

10/7/2015

\ 4

Execution
Engine

High coverage
test inputs

Symbolic Execution

Information Security 13

Symbolic Execution — Description

 Execute the program with symbolic valued
inputs (Goal: good path coverage)

» Represents equivalence class of inputs with
first order logic formulas (path constraints)

* One path constraint abstractly represent all
inputs that induces the program execution to
go down a specific path

 Solve the path constraint to obtain one
representative input that exercises the program
to go down that specific path

More details on Symbolic Execution

* Instead of concrete state, the program
maintains symbolic states, each of which
maps variables to symbolic values

 Path condition is a quantifier-free formula over
the symbolic inputs that encodes all branch
decisions taken so far

* All paths in the program form its execution
tree, in which some paths are feasible and
some are infeasible

10/7/2015 Information Security 15

Symbolic Execution (contd.)

Void func(int x, int y){
intz=2*y;

if(z == x){
if (x>y+10)
ERROR
}
}
int main(){

int x = sym_input();
inty = sym_input();
func(x, y);

return O;

How does symbolic execution work?
func(x=a,y=b)

Path constraint

‘io

O 9

Generated
Test inputs
for this path

z=2b
&& &&
a<=b+10 a>b+10

< X

O o

x=a=30
y=b =15

=N

Note: Require inputs to be marked as symbolic

Symbolic Execution (contd.)

How does symbolic execution work?
func(x=a,y=b)

Xx=a=2

y=b=1
Xx=a=4
y:b:Z

nn
T o
in n
1

w o

< X

Path constraints represent
equivalence classes of inputs

10/7/2015 Information Security 17

SMT Queries

 Counterexample queries (generate a test case)

 Branch queries (whether a branch is valid)

Path Constraints = {C,, C,, .., C.}; SAT

Use queries to determine validity of a branch
else path is impossible: C; A C, A ... A C, A =K is UNSAT
then path is impossible: C; A C, A ... A C, A Kis UNSAT

10/7/2015 Information Security 18

Optimizing SMT Queries

» EXpression rewriting
« Simple arithmetic simplifications (x * 0 = 0)
« Strength reduction (x * 2" = x << n)
« Linear simplification (2 * x - x = x)
 Constraint set simplification
e X<T0&&x=5 -> x=95

 Implied Value Concretization
*Xx+1=10 -—-> x=9

 Constraint Independence
* i<j && i< 20 && k> 0; new constraint i = 20

Optimizing SMT Queries (contd.)

» Counter-example Cache
* i< 10 && i =10 (no solution)
« i< 10 && j = 8 (satisfiable, with variable
assignments i — 5,j — 8)
» Superset of unsatisfiable constraints
« {i<10,i=10,j =12} (unsatisfiable)

» Subset of satisfiable constraints
*i— 5,j— 8, satisfiesi< 10

« Superset of satisfiable constraints
« Same variable assignments might works

How does Symbolic Execution Flnr'
bugs? “60&"

* It is possible to extend symbr' . s e |
us catch bugs (ot e®” QO

. - i ~ \!
How: Dedicated cher’ \ge o8

C
* Divide by zero ~ X\ srexand z are
symbolic v»- ‘eéc' 0“4\ rent PCis f

* Eventh 6\ 3 &\0 ‘63(" anches we will now fork in

the 6
\&G 9‘&6‘ = 0 and another where z =0
Q“ oo _,dths with the following constraints:

e S (2!=0&&f
\ _ e constrainz = 0 && fjwill give us concrete
\ .t values that will triggerthe divide by zero error.

X
A

10/7/2015 Information Security 21

Classic Symbolic Execution —
Practical Issues

 Loops and recursions — infinite execution tree
 Path explosion --- exponentially many paths

» Heap modeling - symbolic data structures and
pointers

* SMT solver limitations - dealing with complex
path constraints

* Environment modeling - dealing with native /
system/library calls/file operations/network
events

10/7/2015 Information Security 22

Classic Symbolic Execution —
Practical Issues (possible solutions)

* Infinite execution tree . — | Constraints

« Finitize paths by limiting the PC size (bounded
verification)

 Use loop invariants (verification)

 Path explosion
 Select next branch at random
» Select next branch based on coverage
* Interleave symbolic execution with random testing

* Heap modeling
« Segmented address space via the theory of arrays (Klee)
« Lazy concretization (JPF)
« Concolic lazy concretization (CUTE)

Classic Symbolic Execution —
Practical Issues (possible solutions)

* SMT solver limitations
» On-the-fly expression simplification
* Incremental solving
« Solution caching
« Counterexample caching
 Substituting concrete values for symbolic in

complex PCs (CUTE)
» Environment modeling

» Partial state concretization
« Manual models of the environment (Klee)

Symbolic Execution Coverage
Problem

10/7/2015

Symbolic execution may not reach deep into
the execution tree. Specially when
encountering loops.

Information Security

Solution: Concolic Execution

 Concolic = Concrete + Symbolic
« Sometimes called dynamic symbolic execution

* The intention is to visit deep into the program
execution tree

* Program is simultaneously executed with
concrete and symbolic inputs

» Start off the execution with a random input

 Specially useful in cases of remote procedure
call

Concolic Execution Steps

» Generate a random seed input to start
execution

» Concretely execute the program with the
random seed input and collect the path

constraint W ot o

« Example:a && b && ¢ / the first?

* In the next iteration, negate the last conjunct to
obtain the constraint a && b && !c

 Solve it to get input to the path which matches
all the branch decisions except the last one

Concolic Execution

Void func(int x, int y){
intz=2*y;

if(z == x){
if (x>y+10)
ERROR

}

}

int main(){
int x = input();
inty = input();
func(x, y);
return O;

}

10/7/2015

Random seed x=2,y=1
func(x=a,y=b)
Path constraint 2 =92b

2b == a &&
a>b+10

Information Security 28

Acknowledgement

Some of the content are derived from the slides
of Endadul Haque, Emina Torlak, Nikolaj Bjgrner,
Bruno Dutertre, and Leonardo de Moura

