
Symbolic and Concolic
Execution of Programs

Information Security, CS 526

Omar Chowdhury

10/7/2015 Information Security, CS 526 1

Reading for this lecture
• Symbolic execution and program testing - James King

• KLEE: Unassisted and Automatic Generation of High-
Coverage Tests for Complex Systems Programs -
Cadar et. al.

• Symbolic Execution for Software Testing: Three
Decades Later - Cadar and Sen

• A Few Billion Lines of Code Later Using Static Analysis
to Find Bugs in the Real World - Engler et. al.

• DART: Directed Automated Random Testing -
Godefroid et. al.

• CUTE: A Concolic Unit Testing Engine for C - Sen et. al.

10/7/2015 Information Security 2

http://madhu.cs.illinois.edu/cs598-fall10/king76symbolicexecution.pdf
http://www.doc.ic.ac.uk/~cristic/papers/klee-osdi-08.pdf
http://www.doc.ic.ac.uk/~cristic/papers/klee-osdi-08.pdf
http://www.doc.ic.ac.uk/~cristic/papers/klee-osdi-08.pdf
http://cacm.acm.org/magazines/2013/2/160161-symbolic-execution-for-software-testing/fulltext
http://cacm.acm.org/magazines/2013/2/160161-symbolic-execution-for-software-testing/fulltext
http://web.stanford.edu/~engler/BLOC-coverity.pdf
http://web.stanford.edu/~engler/BLOC-coverity.pdf
http://research.microsoft.com/en-us/um/people/pg/public_psfiles/pldi2005.pdf
http://mir.cs.illinois.edu/marinov/publications/SenETAL05CUTE.pdf
http://mir.cs.illinois.edu/marinov/publications/SenETAL05CUTE.pdf
http://mir.cs.illinois.edu/marinov/publications/SenETAL05CUTE.pdf
http://mir.cs.illinois.edu/marinov/publications/SenETAL05CUTE.pdf

What is the goal?

10/7/2015 Information Security 3

Testing
• Majority of the testing approaches are

manual

• Time consuming process

• Error-prone

• Incomplete

• Depends on the quality of the test cases
or inputs

• Provides little in terms of coverage

10/7/2015 Information Security 4

Obvious Questions?

10/7/2015 Information Security 5

Can we do better in terms of test
generation? Can we some how make

it automatic?

Background: SAT

10/7/2015 Information Security 6

SATisfying
assignment!

Given a propositional formula in CNF, find if
there exists an assignment to Boolean
variables that makes the formula true:

1 = (b c)

2 = ( a  d)

3 = ( b d)

 = 1 2 3

A = {a=0, b=1, c=0, d=1}

 

clauses

literals







Background: SMT
SMT: Satisfiability Modulo Theories
Input: a first-order formula  over background
theory

Output: is  satisfiable?
• does  have a model?
• Is there a refutation of  = proof of ?

For most SMT solvers:  is a ground formula
• Background theories: Arithmetic, Arrays, Bit-vectors,

Algebraic Datatypes
• Most SMT solvers support simple first-order sorts

10/7/2015 Information Security 7

Background: SMT
• b + 2 = c and f(read(write(a,b,3), c-2)) ≠ f(c-b+1)

10/7/2015 Information Security 8

Array Theory Arithmetic
Uninterpreted

Function

Example SMT Solving
• b + 2 = c and f(read(write(a,b,3), c-2)) ≠ f(c-b+1)

[Substituting c by b+2]

• b + 2 = c and f(read(write(a,b,3), b+2-2)) ≠ f(b+2-
b+1)

[Arithmetic simplification]

• b + 2 = c and f(read(write(a,b,3), b)) ≠ f(3)

[Applying array theory axiom–

forall a,i,v:read(write(a,i,v), i) = v]

• b+2 = c and f(3) ≠ f(3) [NOT SATISFIABLE]

10/7/2015 Information Security 9

Program Validation Approaches

10/7/2015 Information Security 10

Cost (programmer effort, time, expertise)

C
o

n
fi

d
e

n
c

e

Static Analysis
Verification

Extended Static Analysis

Symbolic Execution

Concolic Execution
& White-box
Fuzzing

Ad-hoc testing

Automatic Test Generation
Symbolic & Concolic Execution

• How do we automatically generate test inputs
that induce the program to go in different
paths?

• Intuition:
• Divide the whole possible input space of the

program into equivalent classes of input.

• For each equivalence class, all inputs in that
equivalence class will induce the same program
path.

• Test one input from each equivalence class.

10/7/2015 Information Security 11

Symbolic Execution --- History
• 1976: A system to generate test data and

symbolically execute programs (Lori Clarke)

• 1976: Symbolic execution and program testing
(James King)

• 2005-present: practical symbolic execution
• Using SMT solvers

• Heuristics to control exponential explosion

• Heap modeling and reasoning about pointers

• Environment modeling

• Dealing with solver limitations

10/7/2015 Information Security 12

Symbolic Execution (contd.)

10/7/2015 Information Security 13

Void func(int x, int y){

 int z = 2 * y;

 if(z == x){

 if (x > y + 10)

 ERROR

 }

}

int main(){
int x = sym_input();
int y = sym_input();
func(x, y);
return 0;

}

Symbolic
Execution

Engine

SMT solver

Path
constraint

Satisfying
Assignment

High coverage
test inputs

Symbolic Execution

Symbolic Execution --- Description
• Execute the program with symbolic valued

inputs (Goal: good path coverage)

• Represents equivalence class of inputs with
first order logic formulas (path constraints)

• One path constraint abstractly represent all
inputs that induces the program execution to
go down a specific path

• Solve the path constraint to obtain one
representative input that exercises the program
to go down that specific path

10/7/2015 Information Security 14

More details on Symbolic Execution
• Instead of concrete state, the program

maintains symbolic states, each of which
maps variables to symbolic values

• Path condition is a quantifier-free formula over
the symbolic inputs that encodes all branch
decisions taken so far

• All paths in the program form its execution
tree, in which some paths are feasible and
some are infeasible

10/7/2015 Information Security 15

Symbolic Execution (contd.)

10/7/2015 Information Security 16

Void func(int x, int y){

 int z = 2 * y;

 if(z == x){
 if (x > y + 10)
 ERROR

 }

}

int main(){
int x = sym_input();
int y = sym_input();
func(x, y);
return 0;

}

x = a = 0
y = b = 1

2b != a 2b == a

2b == a &&
a <= b + 10

2b == a &&
a > b + 10

func(x = a, y = b)

x = a = 2
y = b = 1

x = a = 30
y = b =15

ERROR

Path constraint z = 2b

Note: Require inputs to be marked as symbolic

Generated
Test inputs
for this path

How does symbolic execution work?

Symbolic Execution (contd.)

10/7/2015 Information Security 17

x = a = 0
y = b = 1

2b != a 2b == a

2b == a &&
a <= b + 10

2b == a &&
a > b + 10

func(x = a, y = b)

x = a = 2
y = b = 1

x = a = 30
y = b =15

ERROR

z = 2b

How does symbolic execution work?

x = a = 0
y = b = 1

x = a = 2
y = b = 3

x = a = 5
y = b = 4

…
…
…

…
…
…

x = a = 2
y = b = 1

x = a = 4
y = b = 2

x = a = -6
y = b = -3

x = a = 40
y = b = 20

x = a = 30
y = b = 15

x = a = 48
y = b = 24

…
…
…

Path constraints represent
equivalence classes of inputs

SMT Queries
• Counterexample queries (generate a test case)

• Branch queries (whether a branch is valid)

10/7/2015 Information Security 18

If K

Path Constraints = {C1, C2, …, Cn}; SAT

then else

Use queries to determine validity of a branch
else path is impossible: C1 ∧ C2 ∧ … ∧ Cn ∧ ¬K is UNSAT
then path is impossible: C1 ∧ C2 ∧ … ∧ Cn ∧ K is UNSAT

Optimizing SMT Queries
• Expression rewriting

• Simple arithmetic simplifications (x * 0 = 0)
• Strength reduction (x * 2n = x << n)
• Linear simplification (2 * x - x = x)

• Constraint set simplification
• x < 10 && x = 5 --> x = 5

• Implied Value Concretization
• x + 1 = 10 --> x = 9

• Constraint Independence
• i<j && i < 20 && k > 0; new constraint i = 20

10/7/2015 Information Security 19

Optimizing SMT Queries (contd.)
• Counter-example Cache

• i < 10 && i = 10 (no solution)

• i < 10 && j = 8 (satisfiable, with variable
assignments i → 5, j → 8)

• Superset of unsatisfiable constraints
• {i < 10, i = 10, j = 12} (unsatisfiable)

• Subset of satisfiable constraints
• i → 5, j → 8, satisfies i < 10

• Superset of satisfiable constraints
• Same variable assignments might works

10/7/2015 Information Security 20

How does Symbolic Execution Find
bugs?
• It is possible to extend symbolic execution to help

us catch bugs

• How: Dedicated checkers
• Divide by zero example --- y = x / z where x and z are

symbolic variables and assume current PC is f
• Even though we only fork in branches we will now fork in

the division operator
• One branch in which z = 0 and another where z !=0
• We will get two paths with the following constraints:
 z = 0 && f, z != 0 && f
• Solving the constraint z = 0 && f will give us concrete

input values that will trigger the divide by zero error.

10/7/2015 Information Security 21

Classic Symbolic Execution ---
Practical Issues
• Loops and recursions --- infinite execution tree

• Path explosion --- exponentially many paths

• Heap modeling --- symbolic data structures and
pointers

• SMT solver limitations --- dealing with complex
path constraints

• Environment modeling --- dealing with native /
system/library calls/file operations/network
events

10/7/2015 Information Security 22

Classic Symbolic Execution ---
Practical Issues (possible solutions)
• Infinite execution tree

• Finitize paths by limiting the PC size (bounded
verification)

• Use loop invariants (verification)

• Path explosion
• Select next branch at random
• Select next branch based on coverage
• Interleave symbolic execution with random testing

• Heap modeling
• Segmented address space via the theory of arrays (Klee)
• Lazy concretization (JPF)
• Concolic lazy concretization (CUTE)

10/7/2015 Information Security 23

Path
Constraints

Classic Symbolic Execution ---
Practical Issues (possible solutions)
• SMT solver limitations

• On-the-fly expression simplification

• Incremental solving

• Solution caching

• Counterexample caching

• Substituting concrete values for symbolic in
complex PCs (CUTE)

• Environment modeling
• Partial state concretization

• Manual models of the environment (Klee)

10/7/2015 Information Security 24

Symbolic Execution Coverage
Problem

10/7/2015 Information Security 25

Symbolic execution may not reach deep into
the execution tree. Specially when

encountering loops.

Solution: Concolic Execution
• Concolic = Concrete + Symbolic

• Sometimes called dynamic symbolic execution

• The intention is to visit deep into the program
execution tree

• Program is simultaneously executed with
concrete and symbolic inputs

• Start off the execution with a random input

• Specially useful in cases of remote procedure
call

10/7/2015 Information Security 26

Concolic Execution Steps
• Generate a random seed input to start

execution

• Concretely execute the program with the
random seed input and collect the path
constraint

• Example: a && b && c

• In the next iteration, negate the last conjunct to
obtain the constraint a && b && !c

• Solve it to get input to the path which matches
all the branch decisions except the last one

10/7/2015 Information Security 27

Why not from
the first?

Concolic Execution

10/7/2015 Information Security 28

Void func(int x, int y){

 int z = 2 * y;

 if(z == x){
 if (x > y + 10)
 ERROR

 }

}

int main(){
int x = input();
int y = input();
func(x, y);
return 0;

}

2b != a 2b == a

2b == a &&
a <= b + 10

2b == a &&
a > b + 10

func(x = a, y = b)

x = a = 30
y = b =15

ERROR

Path constraint z = 2b

x = 2, y = 1 Random seed

Acknowledgement
Some of the content are derived from the slides
of Endadul Haque, Emina Torlak, Nikolaj Bjørner,

Bruno Dutertre, and Leonardo de Moura

10/7/2015 Information Security 29

