
CS526: Computer Security

Fall 2015

Topic 8

Software Security

http://www.purdue.edu/

2

Secure Software

 “A program is secure” – What does it mean?

 To understand program security one has to
understand if the program behaves as its
designer intended and as the user expected

 Software plays
 a major role in providing security

 as source of insecurity

Why Software Vulnerabilities Matter?

 When a process reads input from attacker, the

process may be exploited if it contains

vulnerabilities.

 When an attacker successfully exploits a

vulnerability, he can

 Crash programs: Compromises availability

 Execute arbitrary code: Compromises integrity

 Obtain sensitive information: Compromises confidentiality

 Software vulnerability enables the attacker to run

with privileges of other users, violating desired

access control policy

3

Attacks Exploiting Software Vulnerabilities

 Drive-by download (drive-by installation)

 malicious web contents exploit vulnerabilities in

browsers (or plugins) to download/install malware

on victim system

 Email attachments in PDF, Word, etc.

 Network-facing daemon programs (such as

http, ftp, mail servers, etc.) as entry points

 Privilege escalation

 Attacker on a system exploits vulnerability in a

root process and gains root privilege

4

Secure Code – Where do we stand today?

5

A Real Example of Vulnerability

6 ** This picture is taken from http://zd.net/1mLOuXz

7

Common Software Vulnerabilities

 Input validation

 Race conditions

 Time-to-check-to-time-to-use (TOCTTOU)

 Buffer overflows

 Format string problems

 Integer overflows

 Failing to handle errors

 Other exploitable logic errors

Input validation

8

Sources of Input that Need Validation

 Sources of input for local applications
 Command line arguments

 Environment variables

 Configuration files, other files

 Inter-Process Communication call arguments

 Network packets

 Sources of input for web applications
 Web form input

 Scripting languages with string input

9

CS526 Topic 9: Software Vulnerabilities 10

Environment variables

 Users can set the environment variables

to anything

 Using execve

 Has some interesting consequences

 Examples:

 PATH

 LD_LIBRARY_PATH

 IFS

CS526 Topic 9: Software Vulnerabilities 11

Attack by Resetting PATH

 A setuid program has a system call:

system(ls);

 The user sets his PATH to be . (current

directory) and places a program ls in this

directory

 The user can then execute arbitrary

code as the setuid program

 Solution: Reset the PATH variable to be

a standard form (i.e., “/bin:/usr/bin”)

CS526 Topic 9: Software Vulnerabilities 12

Attack by Resetting IFS

 Attacker can reset the IFS variable

 IFS is the characters that the system

considers as white space

 If not, the user may add “s” to the IFS

 system(ls) becomes system(l)

 Place a function l in the directory

 Moral: things are intricately related and

inputs can have unexpected

consequences

CS526 Topic 9: Software Vulnerabilities 13

Attack by Resetting

LD_LIBRARY_PATH

 Assume you have a setuid program that
loads dynamic libraries

 UNIX searches the environment variable
LD_LIBRARY_PATH for libraries

 A user can set LD_LIBRARY_PATH to
/tmp/attack and places his own copy of the
libraries here

 Most modern C runtime libraries have fixed
this by not using the LD_LIBRARY_PATH
variable when the EUID is not the same as
the RUID or the EGID is not the same as the
RGID

Command Line as Source of Input

void main(int argc, char** argv) {

char buf[1024];

sprintf(buf, “cat %s”,argv[1]);

system (“buf”);

}

Intention: get a file name from input and then cat the file

 What can go wrong?

 Attacker can add to the command by using, e.g., “a; ls”

14

Input Validation in Web Applications

 A remote example (PHP passthru)

echo 'Your usage log:
';

$username = $_GET['username'];

passthru(“cat /logs/usage/$username”);

 PHP passthru(string) executes command

 What can go wrong?

 Attackers can put “;” to input to run desired

commands, e.g.,
“username=John;cat%20/etc/passwd”

15

Directory Traversal Vulnerabilities in Web

Applications

 A typical example of vulnerable application in

php code is:
<?php

 $template = 'red.php';

 if (isset($_COOKIE['TEMPLATE']))

$template = $_COOKIE['TEMPLATE'];

include ("/home/users/phpguru/templates/" . $template);

?>

 Attacker sends
 GET /vulnerable.php HTTP/1.0

 Cookie: TEMPLATE=../../../../../../../../../etc/passwd

CS526 Topic 9: Software Vulnerabilities 16

CS526 Topic 9: Software Vulnerabilities 17

Checking input can be tricky:

Unicode vulnerabilities

 Some web servers check string input

 Disallow sequences such as ../ or \

 But may not check unicode %c0%af for '/'

 IIS Example, used by Nimda worm

 passes <some command> to cmd command

 scripts directory of IIS has execute permissions

 Input checking would prevent that, but not this

 IIS first checks input, then expands unicode

http://victim.com/scripts/../../winnt/system32/cmd.exe?<some command>

http://victim.com/scripts/..%c0%af..%c0%afwinnt/system32/...

Input Validation in Web Applications

 SQL injection

 Caused by failure to validate/process inputs

from web forms before using them to create

SQL queries

 Cross Site Scripting

 Caused by failure to validate/process inputs

from web forms or URL before using them to

create the web page

18

Takeaway: Input Validation

 Malicious inputs can become code, or

change the logic to do things that are not

intended

 Inputs interact with each other,

sometimes in subtle ways

 Use systematic approaches to deal with

input validation

 Avoid checking for bad things (blacklisting)

 Instead check for things that allowed

(whitelisting)

19

Time-of-check-to-time-of-use

 TOCTTOU, pronounced "TOCK too“

 A class of software bug caused by changes in a system

between the checking of a condition (such as

authorization) and use of the results of the check.

 When a process P requests to access resource X, the

system checks whether P has right to access X; the

usage of X happens later

 When the usage occurs, perhaps P should not have

access to X anymore.

 The change may be because P changes or X changes.

CS526 Topic 9: Software Vulnerabilities 20

An Example TOCTTOU

 In Unix, the following C code, when used in a setuid

program, is a TOCTTOU bug:

if (access("file", W_OK) != 0)

 { exit(1); }

fd = open("file", O_WRONLY);

write(fd, buffer, sizeof(buffer));

 Here, access is intended to check whether the real user who

executed the setuid program would normally be allowed to write

the file (i.e., access checks the real userid rather than effective

userid).

CS526 Topic 9: Software Vulnerabilities 21

Attacker tries to execute the

following line in another process

when this process reaches exactly

this time:

Symlink(“/etc/passwd”, “file”)

TOCTTOU

 Exploiting a TOCTTOU vulnerabilities requires

precise timing of the victim process.

 Can run the attack multiple times, hoping to get

lucky

 Most general attack may require “single-stepping”

the victim, i.e., can schedule the attacker process

after each operation in the victim

 Techniques exist to “single-step” victim

 Preventing TOCTTOU attacks is difficult

CS526 Topic 9: Software Vulnerabilities 22

Buffer overflow

23

24

What is a Buffer Overflow?

 Buffer overflow occurs when a program or
process tries to store more data in a buffer
than the buffer can hold

 Very dangerous because the extra
information may:

 Affect user’s data

 Affect user’s code

 Affect system’s data

 Affect system’s code

25

Why Does Buffer Overflow Happen?

 No checks on bounds

 Programming languages give user too much control

 Programming languages have unsafe functions

 Users do not write safe code

 C and C++, are more vulnerable because

they provide no built-in protection against

accessing or overwriting data in any part of

memory

 Can’t know the lengths of buffers from a pointer

 No guarantees strings are null terminated

26

Why Buffer Overflow Matters

 Overwrites
 other buffers

 variables

 program flow data

 Results in
 erratic program behavior

 a memory access exception

 program termination

 incorrect results

 breach of system security

History

 Used in 1988’s Morris Internet Worm

 Alphe One’s “Smashing The Stack For

Fun And Profit” in Phrack Issue 49 in 1996

popularizes stack buffer overflows

 Still extremely common today

27

*The Internet Worm Program: An Analysis --- by Eugene H. Spafford

(http://spaf.cerias.purdue.edu/tech-reps/823.pdf)

Types of Buffer Overflow Attacks

 Stack overflow

 Shell code

 Return-to-libc

• Overflow sets ret-addr to address of libc function

 Off-by-one

 Overflow function pointers & longjmp buffers

 Heap overflow

28

Process Memory

29

A 32-bit process sees memory as an

array of bytes that goes from

address 0 to 232-1 (0 to 4GB-1)

 0

(4GB-1) 232-1

Memory Sections

30

Stack

Text

Data

Bss

Heap

Shared Libs

0

232-1

The memory is organized into sections

called “memory mappings”

Memory Sections

31

Each section has different permissions:
read/write/execute or a combination of
them.

Text- Instructions that the program runs

Data – Initialized global variables.

Bss – Uninitialized global variables. They
are initialized to zeroes.

Heap – Memory returned when calling
malloc/new. It grows upwards.

Stack – It stores local variables and return
addresses. It grows downwards.

32

Background: C Program Execution

 PC (program counter or instruction pointer) points

to next machine instruction to be executed

 Procedure call

 Prepare parameters

 Save state (SP (stack pointer) and PC) and allocate on

stack local variables

 Jumps to the beginning of procedure being called

 Procedure return

 Recover state (SP and PC (this is return address)) from

stack and adjust stack

 Execution continues from return address

33

Background: Stack Frame

SP

Parameters

Return address

Stack Frame Pointer

Local variables
Stack

Growth

 Parameters for the
procedure

 Save current PC onto
stack (return
address)

 Save current SP
value onto stack

 Allocates stack space
for local variables by
decrementing SP by
appropriate amount

34

 Suppose a web server contains a function:

 void my_func(char *str) {

 char buf[128];

 strcpy(buf, str);

 do-something(buf);

 }

 When the function is invoked the stack looks like:

 What if *str is 136 bytes long? After strcpy:

str ret-addr sfp buf

top
of

stack

str
top
of

stack
 *str ret

Example of a Stack-based Buffer Overflow

35

Basic Stack Exploit

 Suppose *str is such that
after strcpy stack looks like:

 When my_func() exits, the user will be given a shell

 Note: attack code runs in stack.

 To determine ret attacker guesses position when
my_func() is called.

top
of

stack
 *str ret Code for P

Program P: exec(“/bin/sh”)

void my_func(char *str) {

 char buf[128];

 strcpy(buf, str);

 do-something(buf);

}

For more info, see Smashing the Stack for Fun and Profit by Aleph One

Carrying out this Attack Requires

 Determine the location of injected code position

on stack when my_func() is called

 So as to change RET on stack to point to it

 Location of injected code is fixed relative to the location of the

stack frame

 Program P should not contain the ‘\0’

character.

 Easy to achieve

 Overflow should not crash program before

my_func() exits

36

37

Some Unsafe C lib Functions

 strcpy (char *dest, const char *src)

 strcat (char *dest, const char *src)

 gets (char *s)

 scanf (const char *format, …)

 printf (conts char *format, …)

38

 Stack smashing attack (the basic stack attack)

 Overwrite return address on the stack, by overflowing

a local buffer variable.

 Function pointers (used in attack on PHP 4.0.2)

 Overflowing buf will overwrite function pointer.

Heap

or
Stack

 buf[128] FuncPtr

Other Control Hijacking Opportunities

39

return-to-libc attack

 “Bypassing non-executable-stack during
exploitation using return-to-libc” by c0ntex

 *str ret Code for P

Shell code attack: Program P: exec(“/bin/sh”)

 *str ret fake_ret

system() in libc

Return-to-libc attack: No code comes
after ret (only the arg for the call)

“/bin/sh”

Return-to-libc Attacks

 Instead of putting

shellcode on stack,

can put args there,

overwrite return

address with pointer

to well known library

function

 e.g.,
system(“/bin/sh”);

 Return-to-libc attack

0x80707

336
0x63441

827

return

addr

request

args

In
cre

a
sin

g
 m

e
m

o
ry

a
d
d
re

sse
s

saved fp

main()’s
stack
frame

38

17

local vars

libc (text
segment)

…

system()

“/bin/sh”

0x61a4ac14

0x80707308

Slide from Brad Karp, UCL. Software security 40

41

Heap-based Buffer Overflow Attacks

 Remember that heap represents data sections
other than the stack
 buffers that are dynamically allocated, e.g., by malloc

 statically initialized variables (data section)

 uninitialized buffers (bss section)

 Heap overflow may overwrite other data allocated
on heap

 By exploiting the behavior of memory management
routines, attacker may overwrite an arbitrary
memory location with a small amount of data

Prevention mechanisms

42

43

 Use type safe languages (e.g., Java)

 Use safe library functions (e.g., strncpy)

 Static source code analysis

 Non-executable stack

 Run time checking (e.g., StackGaurd)

 Address space layout randomization (ASLR)

 Detecting deviation of program behavior

Preventing Buffer Overflow Attacks

Static Source Code Analysis

• Statically check source code to detect
buffer overflows

• Automate the code review process

• Several tools exist

• Expensive (exponential)

• Typically done for short programs of critical
importance

• Find lots of bugs, but not all

44

45

 Some examples

• Crash Causing Defects

• Null pointer dereference

• Use after free

• Double free

• Array indexing errors

• Mismatched array new/delete

• Potential stack overrun

• Potential heap overrun

• Return pointers to local variables

• Logically inconsistent code

• Uninitialized variables

• Invalid use of negative values

• Passing large parameters by value

• Underallocations of dynamic data

• Memory leaks

• File handle leaks

• Network resource leaks

• Unused values

• Unhandled return codes

• Use of invalid iterators

Bugs to Detect in Source Code Analysis

46

Non-Executable Stack

 Basic stack exploit can be prevented by

hardware support to mark stack segment

as non-executable

 Support in Windows since XP SP2. Code

patches exist for Linux, Solaris.

 Problems:

 Does not defend against all attacks (see “return-to-

libc”)

 Does not block more general overflow exploits

• Overflow on heap; overflow func pointer

47

 StackGuard checks for stack integrity at run

time

 E.g., embed “canaries” in stack frames and

verify their integrity prior to function return.

str ret sfp local

top
of

stack
canary str ret sfp local canary

Frame 1 Frame 2

Run Time Checking: StackGuard

48

Canary Types

 Random canary
 Choose random string at program startup

 Insert canary string into every stack frame

 Verify canary before returning from function

 To corrupt random canary, attacker must learn current random
string

 Terminator canary
 Canary = 0, newline, linefeed, EOF

 String functions will not copy beyond terminator.

 Hence, attacker cannot use string functions to corrupt stack.

 Weakness: Adversary knows canary

 Canaries do not offer full protection

49

 Validate sufficient space (LibSafe)

 E.g., intercept calls to strcpy (dest, src) and check that:
 |frame-pointer – dest| > strlen(src)

 If so do strcpy, else terminate application.

 Copying to a safe location (StackShield)

 E.g., at function prologue, copy return address to a safe

location, and upon return check that return address still

equals the saved copy

Other Run Time Checking

50

 Buffer overflow and return-to-libc exploits need to

know the (virtual) address to which pass control

 Address of attack code in the buffer

 Address of a standard kernel library routine

 Same address is used on many machines

 Slammer infected 75,000 MS-SQL servers using same code

on every machine

 Idea: introduce artificial diversity

 Make stack addresses, addresses of library routines, etc.

unpredictable and different from machine to machine

Randomization: Motivations

51

Address Space Layout Randomization

 Arranging the positions of key data areas randomly in a

process' address space.

 e.g., the base of the executable and position of libraries (libc),

heap, and stack,

 Effects: for return to libc, needs to know address of the key

functions.

 Attacks:

• Repetitively guess randomized address

• Use non-ASLR modules

 Supported on Windows Vista, Linux (and other UNIX

variants)

Takeaway

• Software vulnerabilities may have

severe implications

• Mostly result from improper input

validation and buffer overflow

• Avoid using functions that don’t check

boundaries

52

Acknowledgement

Slides from Ninghui Li, Endadul Haque,

and Cristina Nita-Rotaru

53

Thank you

54

55

Background: Programs and Memory

 The operating system creates a
process by assigning memory and
other resources

 Code: the program instructions to be executed

 Data: initialized variables including global and
static variables, un-initialized variables

 Heap: dynamic memory for variables that are
created (e.g., with malloc) and disposed of with
free

 Stack: keeps track of the point to which each
active subroutine should return control when it
finishes executing; stores variables that are local
to functions

Stack

Heap

Code

Data

Virtual Memory

Code Fragment for Printing Stack

Frame (from prstack.c)

int fac(int a, int p) {

 char f[8] = " ";

 int b = 0;

 // print stack frame

 gets(f); // buffer may

overflow

 if (a == 1) { b = 1; }

 else { b = a * fac(a-1,p); }

 // print stack frame again }

 return b;

}

int main(int argc, char*argv[]) {

 int n;

 int r;

 if (argc == 2) {

 n = atoi(argv[1]);

 r = fac(n, 0);

 } else if (argc == 3) {

 n = atoi(argv[2]);

 r = fac(n, 1);

 }

 return 0;

}

Code Fragment for Printing Stack

Frame (from prstack.c)

int fac(int a, int p) {

 char f[8] = " "; int b = 0;

 printf("Address %p: argument int p: 0x%.8x\n", &p, p);

 printf("Address %p: argument int a: 0x%.8x\n", &a, a);

 printf("Address %p: return address : 0x%.8x\n", &a-1, *(&a-1));

 printf("Address %p: saved stack frame p: 0x%.8x\n", &a-2, *(&a-2));

 printf("Address %p: local var f[4-7] : 0x%.8x\n", (char *)(&f)+4,

 *((int *)(&f[4])));

 printf("Address %p: local var f[0-3] : 0x%.8x\n", &f, *((int *)f));

 printf("Address %p: local var int b: 0x%.8x\n", &b, b);

 printf("Address %p: gap : 0x%.8x\n", &b-1, *(&b-1));

…

}

Printed Stack Frame

Entering function call fac(a=2), code at 0x080484a5

Address 0xff98942c: argument int p: 0x00000001

Address 0xff989428: argument int a: 0x00000002

Address 0xff989424: return address : 0x0804860e

Address 0xff989420: saved stack frame p: 0xff989440

Address 0xff98941c: local var f[4-7] : 0x00202020

Address 0xff989418: local var f[0-3] : 0x20202020

Address 0xff989414: local var int b: 0x00000000

Address 0xff989410: gap : 0x00000000

Entering function call fac(a=1), code at 0x080484a5

Address 0xff98940c: argument int p: 0x00000001

Address 0xff989408: argument int a: 0x00000001

Address 0xff989404: return address : 0x0804860e

Address 0xff989400: saved stack frame p: 0xff989420

Address 0xff9893fc: local var f[4-7] : 0x00202020

Address 0xff9893f8: local var f[0-3] : 0x20202020

Address 0xff9893f4: local var int b: 0x00000000

Address 0xff9893f0: gap : 0x00000000

Stack Frame with Overflowed Buffer
Entering function call fac(a=1), code at 0x080484a5

Address 0xffd5724c: argument int p: 0x00000001

Address 0xffd57248: argument int a: 0x00000001

Address 0xffd57244: return address : 0x0804860e

Address 0xffd57240: saved stack frame p: 0xffd57260

Address 0xffd5723c: local var f[4-7] : 0x00202020

Address 0xffd57238: local var f[0-3] : 0x20202020

Address 0xffd57234: local var int b: 0x00000000

Address 0xffd57230: gap : 0x00000000

123456789012345

Leaving function call fac(a=1), code at 0x80484a5

Address 0xffd5724c: argument int p: 0x00000001

Address 0xffd57248: argument int a: 0x00000001

Address 0xffd57244: return address : 0x00353433

Address 0xffd57240: saved stack frame p: 0x32313039

Address 0xffd5723c: local var f[4-7] : 0x38373635

Address 0xffd57238: local var f[0-3] : 0x34333231

Address 0xffd57234: local var int b: 0x00000001

Address 0xffd57230: gap : 0x00000001

Segmentation fault (core dumped)

Overflow

ing f to

overwrit

e saved

sfp and

return

address.

Input 15

bytes.

What does a function do?

fac

 0x080484a5 <+0>: push %ebp save stack frame pointer

(fp)
 0x080484a6 <+1>: mov %esp,%ebp set current stack fp

 0x080484a8 <+3>: sub $0x18,%esp allocate space for local var

 0x080484ab <+6>: movl $0x20202020,-0x8(%ebp) initialize f[0-3]

 0x080484b2 <+13>: movl $0x202020,-0x4(%ebp) initialize f[4-7]

 0x080484b9 <+20>: movl $0x0,-0xc(%ebp) initialize

b

 0x080484c0 <+27>: mov 0xc(%ebp),%eax load

value of p to eax

 0x080484c3 <+30>: test %eax,%eax check if

eax is 0

 0x080484c5 <+32>: je 0x80485e8 <fac+323> if so, skip printing frame



 0x080485e8 <+323>: mov 0x8(%ebp),%eax load value of a to

eax

 0x080485eb <+326>: cmp $0x1,%eax check if

a==1

 0x080485ee <+329>: jne 0x80485f9 <fac+340> if not, call fac

 0x080485f0 <+331>: movl $0x1,-0xc(%ebp) otherwise,

assigns 1 to b

 0x080485f7 <+338>: jmp 0x8048617 <fac+370>

 ….

 0x08048609 <+356>: call 0x80484a5 <fac>

 0x0804860e <+361>: mov 0x8(%ebp),%edx

 0x08048611 <+364>: imul %edx,%eax

