| Project:
Simulated Encrypted File System
(SEFS)

Omar Chowdhury

CS526: Information Security

Motivation

 Traditionally files are stored in the disk in plaintext.

* If the disk gets stolen by a perpetrator, he can access all the
data in the disk.

* Disk containing sensitive personal information getting stolen by
hackers are very common.

hacked.again

Fall 2015 CS526: Information Security

A Possible Defense (Encrypted File Systems)

» Defense: encrypt the files using some semantically secure
encryption scheme.

* No one should be access/change the file's contents without
proper credentials.

* An individual with proper credentials should be able to perform
all the necessary operations on the encrypted file.

 An encrypted file system (in short, EFS) can support such
operations.

« Example: Solaris, Windows NT, and Linux support EFS.

Goal of this Project

ther

 Additionally, we are trying something new this semester. To
increase the communication between your classmates we want
the projects to be inter-operable.

Fall 2015 CS526: Information Security

Logistics

« Team: You can work in a team of consisting of (maximum) two members.

Project

20% 45%

}30%
(1) User (2) Simplified (3) Full
Authentication SEFS SEFS

* Inter-operability: 5% of the total project points.

Fall 2015 CS526: Information Security

Part 1 — User Authentication using Passwords

 Username;

« Allowed characters: “a-zA-Z0-9"

 Length: >5 and <32
e Password:

Password file

32
bytes

/

/

Field
Separator N

N

]

\

-/

» Allowed characters: “a-zA-Z0-9@#S%&*()-+="

* Length: >8 and <32
e Salt:

Length 32 bytes

Jsername }It hashedPass‘word

Plaintext

//

~

« Randomly generated for each password/

» Hashing algorithm:
« PKCS5_PBKDF2_HMAC_SHA1

e

Hexadecimal d

passwd

Part 1 — Functionalities
N T Password file

Functions developed in this part of the project for checking user
authentication will be used in the next two parts of the project.

- ONTAarTg e OO T PR oOOvVVOTO S, [P PT e paSSWd

Fall 2015 CS526: Information Security

Part 2 — Simplified SEFS

« Simplified SEFS
« Master key: Randomly generated, 128 bit
« Master IV: Randomly generated, 128 bit

« A sample master key file will be given
to you which contains the binary
representation of a key and |V.

« A sample key and IV loading program
IS given to you.

« A sample random key and |V generator
program is given to you.

Plaintext File F

After
encryption

Meta File F.meta

Chunk File Rname

Chunk file —

« Name can contain only alphanumeric
characters

* File name length maximum 20
characters.

Part 2 — File Format
IV (in plaintext) -l

+

Meta file format Chunk file format

Fall 2015 CS526: Information Security

Master File List (Simplified SEFS Integrity
Protection)

File Name SHA256 Digest of the Meta file

Part 2 — Functionality

- create_file(u,p,filename) Returns:
. . OKAY -> 1
- delete_file(u,p,filename) ERROR o -1

« encrypt_file(u,p,filename)
« decrypt_file(u,p,filename,pfilename)

[read_from_file(u,p,filename,position,len)| Returns:
. . . ey OKAY -> char *
» write_to_file(u,p,filename,position,newcontent) ERROR > NULL

« file_size(u,p,filename)
« file_integrity_check(u,p,filename)
« system_health_check()

Part 2 — Read Operation

Meta file format Chunk file format

Fall 2015 CS526: Information Security

Full SEFS

» Generalization of the simplified SEFS.
« Each chunk can hold at most 1024 bytes of plaintext data.
 Each plaintext file can be divided into multiple encrypted chunk files.

* |f a file has less than 1024 bytes of data, you are required to pad it
with ASCII character 0 to make it 1024 bytes.

« Space restriction: You are required to use the minimum number of
chunk files for storing each plaintext file

- Example: If you have a chunk containing 512 bytes of data and the
user wants to write 200 bytes to the end of the chunk, you cannot
create a new chunk and instead have to write into that chunk.

Part 2 — Full SEFS Read Operation

File owner username | ['IV (in plaintext)]

Number of Chunks

File size

[Start Chunk Name |

End Chunk Name

| Chunk name {Encryption key|- Chunk HMAC |

Meta file format Chunk file format

Fall 2015 CS526: Information Security 14

Potential Pitfalls

 Memory leaks — a lot of the operations of the project require
pointer manipulation, make sure to free the pointer after usage

* File operations — file operations in C is complicated, you cannot
write in the middle of a file without overwriting the content. You
have to manually move the following content and then write
something

* Error checking — a lot of errors can potentially happen during
the operation and it is paramount that you do handle these
errors. Do not assume inputs are well-formed. Perform input
validation when applicable.

usernam

Different parameters

e

« a-zA-Z0-9
* Length >=6 and < 32

Password
« a-zA-Z0-9@#S%&*()-+=
« Length >=9 and < 32

Password salt

« Randomly generated
« 32 bytes

Master key 128 bits
Master IV 128 bits
Chunk keé/s 128 bits, randomly

generate

For encryption use, AES in the CTR
mode

Chunk Vs 128 bits, randomly
generated

Chunk names are randomly generated
and cannot have space character in it

For padding use the ASCII character O

For hash mac, use HMAC with
EVP_sha256()

For digest, use SHA256

For password hash, use _
PKCS5_PBKDF2_HMAC_SHA1 with
iteration value 20000

Questions

» If you do not understand any specifics,

please do not make your

own assumptions rather confirm with me.

« Making arbitrary, easy to implement assumptions will surely
ensure you losing 5% of the inter-operability.

* Direct any questions related to the proj
email (ochowdhu@purdue.edu), or dro

ect to me through piazza,
0 by my office during

office hours (LWSN 2142 R, Thursday 1

1:30am - 12:30pm)

mailto:ochowdhu@purdue.edu

