
Project:
Simulated Encrypted File System

(SEFS)

Omar Chowdhury

Fall 2015 CS526: Information Security 1

Motivation

• Traditionally files are stored in the disk in plaintext.

• If the disk gets stolen by a perpetrator, he can access all the
data in the disk.

• Disk containing sensitive personal information getting stolen by
hackers are very common.

Fall 2015 CS526: Information Security 2

A Possible Defense (Encrypted File Systems)

• Defense: encrypt the files using some semantically secure
encryption scheme.

• No one should be access/change the file’s contents without
proper credentials.

• An individual with proper credentials should be able to perform
all the necessary operations on the encrypted file.

• An encrypted file system (in short, EFS) can support such
operations.

• Example: Solaris, Windows NT, and Linux support EFS.

Fall 2015 CS526: Information Security 3

Goal of this Project

• Goal: Implement a simulated version of EFS

• Take-a-way message from cryptography lectures:
Do not try to implement your own cryptography library rather
use well-known cryptography libraries.

• We will specifically learn to usage of openSSL library.

• Additionally, we are trying something new this semester. To
increase the communication between your classmates we want
the projects to be inter-operable.

Fall 2015 CS526: Information Security 4

Communication does not imply
copying each other’s code

Logistics

• Team: You can work in a team of consisting of (maximum) two members.

Fall 2015 CS526: Information Security 5

Project

(1) User
Authentication

(2) Simplified
SEFS

(3) Full
SEFS

• Inter-operability: 5% of the total project points.

20%

30%

45%

Part 1 – User Authentication using Passwords

• Username:
• Allowed characters: “a-zA-Z0-9”
• Length: >5 and <32

• Password:
• Allowed characters: “a-zA-Z0-9@#$%&*()-+=”
• Length: >8 and <32

• Salt:
• Randomly generated for each password
• Length 32 bytes

• Hashing algorithm:
• PKCS5_PBKDF2_HMAC_SHA1

Fall 2015 CS526: Information Security 6

Password file

username:salt:hashedPassword

………………………………………..

………………………………………..

passwd

Field
Separator

Plaintext

Hexadecimal

32
bytes

• register_user(u,p,pFile)

• delete_user(u,p,pFile)

• is_user_valid(u,pFile)

• match_user(u,p,pFile)

• change_user_password(u,p,pn,pFile)

Part 1 – Functionalities

Fall 2015 CS526: Information Security 7

Password file

u2:salt2:hashedPassword2

u1:salt1:hashedPassword1

u3:salt3:hashedPassword3

passwd

Returns:
OKAY -> 1

ERROR -> -1

Functions developed in this part of the project for checking user
authentication will be used in the next two parts of the project.

Part 2 – Simplified SEFS

• Simplified SEFS
• Master key: Randomly generated, 128 bit

• Master IV: Randomly generated, 128 bit

• A sample master key file will be given
to you which contains the binary
representation of a key and IV.

• A sample key and IV loading program
is given to you.

• A sample random key and IV generator
program is given to you.

Fall 2015 CS526: Information Security 8

Chunk file –

• Name can contain only alphanumeric
characters

• File name length maximum 20
characters.

Plaintext File F

Meta File F.meta

Chunk File Rname

After
encryption

Part 2 – File Format

Fall 2015 CS526: Information Security 9

Meta file format Chunk file format

File owner username

Number of Chunks

File size

Start Chunk Name

End Chunk Name

Chunk name – Encryption key – Chunk HMAC

IV (in plaintext)

Next Chunk Name

Size of File Content in this Chunk

Plaintext file content

1

Same

NULL

Master File List (Simplified SEFS Integrity
Protection)

Fall 2015 CS526: Information Security 10

File Name SHA256 Digest of the Meta file

……… ………

……… ………

……… ………

Part 2 – Functionality

• create_file(u,p,filename)

• delete_file(u,p,filename)

• encrypt_file(u,p,filename)

• decrypt_file(u,p,filename,pfilename)

• read_from_file(u,p,filename,position,len)

• write_to_file(u,p,filename,position,newcontent)

• file_size(u,p,filename)

• file_integrity_check(u,p,filename)

• system_health_check()

Fall 2015 CS526: Information Security 11

Returns:
OKAY -> 1

ERROR -> -1

Returns:
OKAY -> char *
ERROR -> NULL

Part 2 – Read Operation

Fall 2015 CS526: Information Security 12

Meta file format Chunk file format

File owner username

Number of Chunks

File size

Start Chunk Name

End Chunk Name

Chunk name – Encryption key – Chunk HMAC

IV (in plaintext)

Next Chunk Name

Size of File Content in this Chunk

Plaintext file content

Master Key and
IV

Full SEFS

• Generalization of the simplified SEFS.

• Each chunk can hold at most 1024 bytes of plaintext data.

• Each plaintext file can be divided into multiple encrypted chunk files.

• If a file has less than 1024 bytes of data, you are required to pad it
with ASCII character 0 to make it 1024 bytes.

• Space restriction: You are required to use the minimum number of
chunk files for storing each plaintext file

• Example: If you have a chunk containing 512 bytes of data and the
user wants to write 200 bytes to the end of the chunk, you cannot
create a new chunk and instead have to write into that chunk.

Fall 2015 CS526: Information Security 13

Part 2 – Full SEFS Read Operation

Fall 2015 CS526: Information Security 14

Meta file format Chunk file format

File owner username

Number of Chunks

File size

Start Chunk Name

End Chunk Name

Chunk name – Encryption key – Chunk HMAC

IV (in plaintext)

Next Chunk Name

Size of File Content in this Chunk

Plaintext file content

….

Potential Pitfalls

• Memory leaks – a lot of the operations of the project require
pointer manipulation, make sure to free the pointer after usage

• File operations – file operations in C is complicated, you cannot
write in the middle of a file without overwriting the content. You
have to manually move the following content and then write
something

• Error checking – a lot of errors can potentially happen during
the operation and it is paramount that you do handle these
errors. Do not assume inputs are well-formed. Perform input
validation when applicable.

Fall 2015 CS526: Information Security 15

Different parameters

• username
• a-zA-Z0-9
• Length >= 6 and < 32

• Password
• a-zA-Z0-9@#$%&*()-+=
• Length >= 9 and < 32

• Password salt
• Randomly generated
• 32 bytes

• Master key 128 bits

• Master IV 128 bits

• Chunk keys 128 bits, randomly
generated

• For encryption use, AES in the CTR
mode

• Chunk IVs 128 bits, randomly
generated

• Chunk names are randomly generated
and cannot have space character in it

• For padding use the ASCII character 0

• For hash mac, use HMAC with
EVP_sha256()

• For digest, use SHA256

• For password hash, use
PKCS5_PBKDF2_HMAC_SHA1 with
iteration value 20000

Fall 2015 CS526: Information Security 16

Questions

• If you do not understand any specifics, please do not make your
own assumptions rather confirm with me.

• Making arbitrary, easy to implement assumptions will surely
ensure you losing 5% of the inter-operability.

• Direct any questions related to the project to me through piazza,
email (ochowdhu@purdue.edu), or drop by my office during
office hours (LWSN 2142 R, Thursday 11:30am - 12:30pm)

Fall 2015 CS526: Information Security 17

mailto:ochowdhu@purdue.edu

