
CS526 Topic 11: Web Security Part 1 1

Information Security

CS 526
Topic 11

Web Security Part 1

CS526 Topic 11: Web Security Part 1 2

Readings for This Lecture

• Wikipedia

– HTTP Cookie

– Same Origin Policy

– Cross Site Scripting

– Cross Site Request Forgery

http://en.wikipedia.org/wiki/HTTP_cookie
http://en.wikipedia.org/wiki/Same_origin_policy
http://en.wikipedia.org/wiki/Password_strength
http://en.wikipedia.org/wiki/Password_cracking

Background

• Many sensitive tasks are done through web
– Online banking, online shopping

– Database access

– System administration

• Web applications and web users are targets of
many attacks
– Cross site scripting

– SQL injection

– Cross site request forgery

– Information leakage

– Session hijacking

CS526 3 Topic 11: Web Security Part 1

Web Browser and Network

Browser

Network

• Browser sends requests

• Web site sends response pages, which may include code

• Interaction susceptible to network attacks

OS

Hardware

Web
site

request

reply

CS526 4 Topic 11: Web Security Part 1

Web Security/Privacy Issues

• Secure communications between client & server

– HTTPS (HTTP over Secure Socket Layer)

• User authentication & session management

– Cookies & other methods

• Active contents from different websites

– Protecting resources maintained by browsers

• Web application security

• Web site authentication (e.g., anti-phishing)

• Privacy concerns

CS526 Topic 11: Web Security Part 1 5

HTTP: HyperText Transfer Protocol

• Browser sends HTTP requests to the server

– Methods: GET, POST, HEAD, …

– GET: to retrieve a resource (html, image, script, css,…)

– POST: to submit a form (login, register, …)

– HEAD

• Server replies with a HTTP response

• Stateless request/response protocol

– Each request is independent of previous requests

– Statelessness has a significant impact on design and

implementation of applications

CS526 6 Topic 11: Web Security Part 1

Use Cookies to Store State Info

• Cookies

– A cookie is a name/value pair created by a website to

store information on your computer

Browser
Server

Enters form data

Response + cookies

Browser
Server

Request + cookies

Returns data

Http is stateless protocol; cookies add state

CS526 7 Topic 11: Web Security Part 1

Cookies Fields

• An example cookie from my browser

– Name session-token

– Content "s7yZiOvFm4YymG….”

– Domain .amazon.com

– Path /

– Send For Any type of connection

– Expires Monday, September 08, 2031 7:19:41 PM

CS526 Topic 11: Web Security Part 1 8

Cookies

• Stored by the browser

• Used by the web applications
– used for authenticating, tracking, and maintaining

specific information about users

• e.g., site preferences, contents of shopping carts

– data may be sensitive

– may be used to gather information about specific
users

• Cookie ownership
– Once a cookie is saved on your computer, only the

website that created the cookie can read it

CS526 9 Topic 11: Web Security Part 1

Web Authentication via Cookies

• HTTP is stateless

– How does the server recognize a user who has signed in?

• Servers can use cookies to store state on client

– After client successfully authenticates, server computes

an authenticator and gives it to browser in a cookie

• Client cannot forge authenticator on his own (session id)

– With each request, browser presents the cookie

– Server verifies the authenticator

CS526 10 Topic 11: Web Security Part 1

A Typical Session with Cookies

client server

POST /login.cgi

Set-Cookie:authenticator

GET /restricted.html
Cookie:authenticator

Restricted content

Verify that this
client is authorized

Check validity of
authenticator

Authenticators must be unforgeable and tamper-proof
(malicious clients shouldn’t be able to modify an existing authenticator)

How to design it?

CS526 11 Topic 11: Web Security Part 1

Cross Site Scripting

CS526 Topic 11: Web Security Part 1 12

Client Side Scripting

• Web pages (HTML) can embed dynamic contents

(code) that can be executed on the browser

• JavaScript

– embedded in web pages and executed inside browser

• Java applets

– small pieces of Java bytecodes that execute in

browsers

• Browser extensions (plug-ins) provide further

client-side programming abilities

– E.g., Flash

CS526 13 Topic 11: Web Security Part 1

HTML and Scripting

<html>

 …

 <P>

<script>

 var num1, num2, sum

 num1 = prompt("Enter first number")

 num2 = prompt("Enter second number")

 sum = parseInt(num1) + parseInt(num2)

 alert("Sum = " + sum)

</script>

 …

</html>

Browser receives content, displays
HTML and executes scripts

CS526 14 Topic 11: Web Security Part 1

Scripts are Powerful

• Client-side scripting is powerful and flexible, and

can access the following resources

– Local files on the client-side host

• read / write local files

– Webpage resources maintained by the browser

• Cookies

• Domain Object Model (DOM) objects

– steal private information

– control what users see

– impersonate the user

– Communicating with websites (via XMLHttpRequest)

CS526 15 Topic 11: Web Security Part 1

CS526 Topic 11: Web Security Part 1 16

Domain Object

Model (DOM)
• Object-oriented model

to represent webpages

that allow

programming access

in Javascript

Browser as an Operating System

• Web users visit multiple websites simultaneously

• A browser serves web pages (which may contain

programs) from different web domains

– i.e., a browser runs programs provided by mutually untrusted

entities

– Running code one does not know/trust is dangerous

– A browser also maintains resources created/updated by web

domains

• Browser must confine (sandbox) these scripts so that

they cannot access arbitrary local resources

• Browser must have a security policy to manage/protect

browser-maintained resources and to provide separation

among mutually untrusted scripts

CS526 Topic 11: Web Security Part 1 17

Sandbox

• A security mechanism for separating/limiting running

programs

– Running untrusted programs.

• E.g., javascripts in webpages, mobile apps

– Running programs that are likely to be exploited.

• E.g., network daemon programs

• Implementation: Clearly identify what resources a

program needs and cut off the rest

– Examples include operating system–level virtualization (such as

Unix chroot), virtual machine monitors (VMMs), Java applets,

CS526 Topic 11: Web Security Part 1 18

Same Origin Policy

• The basic security model enforced in the browser

• SoP isolates the scripts and resources downloaded

from different origins

– E.g., evil.org scripts cannot access bank.com resources

• Use origin as the security principal

– Note that the concept of user accounts does not apply

here as security principals

• Origin = domain name + protocol + port

– all three must be equal for origin to be considered the

same

CS526 19 Topic 11: Web Security Part 1

Same Original Policy: What it Controls

• Same-origin policy applies to the following accesses:

– manipulating browser windows

– URLs requested via the XmlHttpRequest

– manipulating frames (including inline frames)

– manipulating documents (included using the object tag)

– manipulating cookies

CS526 20 Topic 11: Web Security Part 1

Problems with S-O Policy

• Poorly enforced on some browsers
– Particularly older browsers

• Limitations if site hosts unrelated pages
– Example: Web server often hosts sites for unrelated parties

• http://www.example.com/account/

• http://www.example.com/otheraccount/

– Same-origin policy allows script on one page to access properties
of document from another

• Can be bypassed in Cross-Site-Scripting attacks

• Usability: Sometimes prevents desirable cross-origin
resource sharing

CS526 21 Topic 11: Web Security Part 1

Browser Architecture: One Process

versus Multiple Processes

• Most processes (e.g., Firefox, Internet Explorer) use one

process for a web browser

– Multiple threads are used for rendering different webpages

• Chrome uses multiple processes

– Use OS protection mechanism to ensure that webpages from

different sites cannot easily interact

• Because they run in different processes

– Reliability advantage: crashing in rendering one website doesn’t

affect another

– Security advantage: vulnerability in rendering does not

compromise other sites; isolate plug-ins

– Uses 3 types of processes: browser, renderers, plug-

ins

CS526 Topic 11: Web Security Part 1 22

Cross Site Scripting (XSS)

• Recall the basics

– scripts embedded in web pages run in browsers

– scripts can access cookies

• get private information

– and manipulate DOM objects

• controls what users see

– scripts controlled by the same-origin policy

• Why would XSS occur

– Web applications often take user inputs and use them

as part of webpage (these inputs can have scripts)

CS526 23 Topic 11: Web Security Part 1

How XSS Works on Online Blog

• Everyone can post comments, which will be displayed to

everyone who view the post

• Attacker posts a malicious comment that includes scripts

(which reads local authentication credentials and send of

to the attacker)

• Anyone who view the post can have local authentication

cookies stolen

• Web apps will check that posts do not include scripts,

but the check sometimes fail.

• Bug in the web application. Attack happens in browser.

CS526 Topic 11: Web Security Part 1 24

Effect of the Attack

• Attacker can execute arbitrary scripts in browser

• Can manipulate any DOM component on

victim.com

– Control links on page

– Control form fields (e.g. password field) on this page

and linked pages.

• Can infect other users: MySpace.com worm.

CS526 25 Topic 11: Web Security Part 1

MySpace.com (Samy worm)

• Users can post HTML on their pages

– MySpace.com ensures HTML contains no

<script>, <body>, onclick,

– However, attacker find out that a way to include
Javascript within CSS tags:

<div style=“background:url(‘javascript:alert(1)’)”>

And can hide “javascript” as “java\nscript”

• With careful javascript hacking:

– Samy’s worm: infects anyone who visits an infected
MySpace page … and adds Samy as a friend.

– Samy had millions of friends within 24 hours.

• More info: http://namb.la/popular/tech.html
CS526 26 Topic 11: Web Security Part 1

Avoiding XSS bugs (PHP)

• Main problem:

– Input checking is difficult --- many ways to inject

scripts into HTML.

• Preprocess input from user before echoing it

• PHP: htmlspecialchars(string)

 & & " " ' '

 < < > >

– htmlspecialchars(

 "Test", ENT_QUOTES);

 Outputs:

 Test
CS526 27 Topic 11: Web Security Part 1

Avoiding XSS bugs (ASP.NET)

• ASP.NET 1.1:

– Server.HtmlEncode(string)

• Similar to PHP htmlspecialchars

– validateRequest: (on by default)

• Crashes page if finds <script> in POST data.

• Looks for hardcoded list of patterns.

• Can be disabled:

 <%@ Page validateRequest=“false" %>

CS526 28 Topic 11: Web Security Part 1

CS526 Topic 11: Web Security Part 1 29

Cross site request

forgery

Cross site request forgery (abbrev.

CSRF or XSRF)

• Also known as one click attack or session

riding

• Effect: Transmits unauthorized commands from a

user who has logged in to a website to the

website.

• Recall that a browser attaches cookies set by

domain X to a request sent to domain X; the

request may be from another domain

– Site Y redirects you to facebook; if you already logged

in, the cookie is attached by the browser

CS526 30 Topic 11: Web Security Part 1

CSRF Explained

• Example:
– User logs in to bank.com. Forgets to sign off.

– Session cookie remains in browser state

– Then user visits another site containing:

 <form name=F action=http://bank.com/BillPay.php>

 <input name=recipient value=badguy> …

 <script> document.F.submit(); </script>
– Browser sends user auth cookie with request

• Transaction will be fulfilled

• Problem:

– The browser is a confused deputy; it is serving both the

websites and the user and gets confused who initiated a

request
CS526 31 Topic 11: Web Security Part 1

Real World CSRF Vulnerabilities

• Gmail

• NY Times

• ING Direct (4th largest saving bank in US)

• YouTube

• Various DSL Routers

• Purdue WebMail

• PEFCU

• Purdue CS Portal

• …

CS526 32 Topic 11: Web Security Part 1

Prevention

• Server side:

– use cookie + hidden fields to authenticate a web form

• hidden fields values need to be unpredictable and user-

specific; thus someone forging the request need to guess the

hidden field values

– requires the body of the POST request to contain cookies

• Since browser does not add the cookies automatically,

malicious script needs to add the cookies, but they do not

have access because of Same Origin Policy

• User side:

– logging off one site before using others

– selective sending of authentication tokens with requests (may

cause some disruption in using websites)

CS526 33 Topic 11: Web Security Part 1

CS526 Topic 11: Web Security Part 1 34

Coming Attractions …

• More Web Security Issues
– SQL injection

– Side channel information leakage

– Browser fingerprinting

