Information Security CS 526 Topic 2

Cryptography: Terminology & Classic Ciphers

Readings for This Lecture

Required readings:

- Cryptography on Wikipedia

Interesting reading

<u>The Code Book</u> by Simon
 Singh

Goals of Cryptography

- The most fundamental problem cryptography addresses: ensure security of communication over insecure medium
- What does secure communication mean?
 - confidentiality (secrecy)
 - only the intended recipient can see the communication
 - integrity (authenticity)
 - the communication is generated by the alleged sender
- What does insecure medium mean?
 - Two basic possibilities:
 - Passive attacker: the adversary can eavesdrop
 - Active attacker: the adversary has full control over the communication channel

Approaches to Secure Communication

- Steganography
 - "covered writing"
 - hides the existence of a message
 - depends on secrecy of method
- Cryptography
 - "hidden writing"
 - hide the meaning of a message
 - depends on secrecy of a short key, not method

Basic Terminology for Encryption

- Plaintext original message
- Ciphertext transformed message
- Key secret used in transformation
- Encryption
- Decryption
- Cipher algorithm for encryption/decryption

Shift Cipher

- The Key Space:
 [0 .. 25]
- Encryption given a key K:
 - each letter in the plaintext P is replaced with the K'th letter following corresponding number (shift right)
- Decryption given K:
 - shift left

Shift Cipher: Cryptanalysis

- Can an attacker find K?
 - YES: by a bruteforce attack through exhaustive key search.
 - key space is small (<= 26 possible keys).
 - How much ciphertext is needed?
- Lessons:
 - Key space needs to be large enough.
 - Exhaustive key search can be effective.

Mono-alphabetic Substitution Cipher

- The key space: all permutations of $\Sigma = \{A, B, C, ..., Z\}$
- Encryption given a key π :
 - each letter X in the plaintext P is replaced with $\pi(X)$
- Decryption given a key π:
 - each letter Y in the cipherext P is replaced with $\pi^{-1}(Y)$

Example:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z π = B A D C Z H W Y G O Q X S V T R N M L K J I P F E U **BECAUSE** → AZDBJSZ

Strength of the Mono-alphabetic Substitution Cipher

- Exhaustive search is difficult
 - key space size is 26! $\approx 4 \times 10^{26} \approx 2^{88}$
- Dominates the art of secret writing throughout the first millennium A.D.
- Thought to be unbreakable by many back then
- How to break it?

Cryptanalysis of Substitution Ciphers: Frequency Analysis

- Basic ideas:
 - Each language has certain features: frequency of letters, or of groups of two or more letters.
 - Substitution ciphers preserve the language features.
 - Substitution ciphers are vulnerable to frequency analysis attacks.
 - How much ciphertext is required?

Frequency of Letters in English

Topic 2: Classical Cryptography

How to Defeat Frequency Analysis?

- Use larger blocks as the basis of substitution. Rather than substituting one letter at a time, substitute 64 bits at a time, or 128 bits.
 - Leads to block ciphers such as DES & AES.
- Use different substitutions to get rid of frequency features.
 - Leads to polyalphabetical substituion ciphers, and to stream ciphers such as RC4

Towards the Polyalphabetic Substitution Ciphers

- Main weaknesses of monoalphabetic substitution ciphers
 - In ciphertext, different letters have different frequency
 - each letter in the ciphertext corresponds to only one letter in the plaintext letter
- Idea for a stronger cipher (1460's by Alberti)
 - Use more than one substitutions, and switch between them when encrypting different letters
 - As result, frequencies of letters in ciphertext are similar
- Developed into an easy-to-use cipher by Vigenère (published in 1586)

The Vigenère Cipher

Treat letters as numbers: [A=0, B=1, C=2, ..., Z=25] Number Theory Notation: $Z_n = \{0, 1, ..., n-1\}$ Definition:

Given m, a positive integer, $P = C = (Z_{26})^n$, and $K = (k_1, k_2, ..., k_m)$ a key, we define:

Encryption:

 $e_k(p_1, p_2... p_m) = (p_1+k_1, p_2+k_2...p_m+k_m) \pmod{26}$ Decryption:

 $d_k(c_1, c_2... c_m) = (c_1-k_1, c_2-k_2... c_m-k_m) \pmod{26}$ Example:

Plaintext:CRYPTOGRAPHYKey:LUCKLUC KLUCKCiphertext:NLAZEIIBLJJI

Security of Vigenere Cipher

- Vigenere masks the frequency with which a character appears in a language: one letter in the ciphertext corresponds to multiple letters in the plaintext. Makes the use of frequency analysis more difficult.
- Any message encrypted by a Vigenere cipher is a collection of as many shift ciphers as there are letters in the key.

Vigenere Cipher: Cryptanalysis

- Find the length of the key.
 - Kasisky test
 - Index of coincidence (we won't cover here)
- Divide the message into that many shift cipher encryptions.
- Use frequency analysis to solve the resulting shift ciphers.
 - How?

Kasisky Test for Finding Key Length

- Observation: two identical segments of plaintext, will be encrypted to the same ciphertext, if they occur in the text at a distance ∆ such that ∆ is a multiple of m, the key length.
- Algorithm:
 - Search for pairs of identical segments of length at least 3
 - Record distances between the two segments: $\Delta 1$, $\Delta 2$, ...
 - m divides gcd(Δ 1, Δ 2, ...)

Example of the Kasisky Test

Key	K	Ι	Ν	G	K	Ι	Ν	G	K	Ι	Ν	G	Κ	Ι	Ν	G	K	Ι	Ν	G	Κ	Ι	Ν	G
PT	t	h	е	S	u	n	а	n	d	t	h	е	m	а	n	i	n	t	h	е	m	0	0	n
СТ	D	Ρ	R	Y	E	V	Ν	Т	Ν	В	U	K	W	Ι	A	0	Х	В	U	K	W	W	В	Τ

Repeating patterns (strings of length 3 or more) in ciphertext are likely due to repeating plaintext strings encrypted under repeating key strings; thus the location difference should be multiples of key lengths.

One-Time Pad

- Fix the vulnerability of the Vigenere cipher by using very long keys
- Key is a random string that is at least as long as the plaintext
- Encryption is similar to shift cipher
- Invented by Vernam in the 1920s

One-Time Pad

Let $Z_m = \{0, 1, \dots, m-1\}$ be the alphabet.

Plaintext space = Ciphtertext space = Key space = $(Z_m)^n$

The key is chosen uniformly randomly

Plaintext $X = (x_1 \ x_2 \ ... \ x_n)$ Key $K = (k_1 \ k_2 \ ... \ k_n)$ Ciphertext $Y = (y_1 \ y_2 \ ... \ y_n)$ $e_k(X) = (x_1+k_1 \ x_2+k_2 \ ... \ x_n+k_n) \mod m$ $d_k(Y) = (y_1-k_1 \ y_2-k_2 \ ... \ y_n-k_n) \mod m$

The Binary Version of One-Time Pad

Plaintext space = Ciphtertext space = Keyspace = {0,1}ⁿ
Key is chosen randomly
For example:
Plaintext is 11011011

- Key is 01101001
- Then ciphertext is 10110010

Bit Operators

- Bit AND
 - $0 \land 0 = 0$ $0 \land 1 = 0$ $1 \land 0 = 0$ $1 \land 1 = 1$
- Bit OR $0 \lor 0 = 0$ $0 \lor 1 = 1$ $1 \lor 0 = 1$ $1 \lor 1 = 1$
- Addition mod 2 (also known as Bit XOR) $0 \oplus 0 = 0$ $0 \oplus 1 = 1$ $1 \oplus 0 = 1$ $1 \oplus 1 = 0$
- Can we use operators other than Bit XOR for binary version of One-Time Pad?

Key Randomness in One-Time Pad

- One-Time Pad uses a very long key, what if the key is not chosen randomly, instead, texts from, e.g., a book are used as keys.
 - this is not One-Time Pad anymore
 - this can be broken
 - How?
- Corrolary: The key in One-Time Pad should never be reused.
 - If it is reused, it is Two-Time Pad, and is insecure!
 - Why?

Usage of One-Time Pad

- To use one-time pad, one must have keys as long as the messages.
- To send messages totaling certain size, sender and receiver must agree on a shared secret key of that size.
 – typically by sending the key over a secure channel
- Key agreement is difficult to do in practice.
- Can't one use the channel for sending the key to send the messages instead?
- Why is OTP still useful, even though difficult to use?

Usage of One-Time Pad

- The channel for distributing keys may exist at a different time from when one has messages to send.
- The channel for distributing keys may have the property that keys can be leaked, but such leakage will be detected
 - Such as in Quantum cryptography

Adversarial Models for Ciphers

- The language of the plaintext and the nature of the cipher are assumed to be known to the adversary.
- Ciphertext-only attack: The adversary knows only a number of ciphertexts.
- Known-plaintext attack: The adversary knows some pairs of ciphertext and corresponding plaintext.
- Chosen-plaintext attack: The adversary can choose a number of messages and obtain the ciphertexts
- Chosen-ciphertext attack: The adversary can choose a number of ciphertexts and obtain the plaintexts.

What kinds of attacks have we considered so far? When would these attacks be relevant in wireless communications?

The Open Design Security Principle

• Kerckhoffs's Principle:

 A cryptosystem should be secure even if everything about the system, except the key, is public knowledge.

• Shannon's maxim:

- "The enemy knows the system."
- Security by obscurity doesn't work
- Should assume that the adversary knows the algorithm; the only secret the adversary is assumed to not know is the key
- What is the difference between the algorithm and the key?

Coming Attractions ...

 Cryptography: Informational Theoretical Security, Stream Ciphers

