Information Security
CS 526
Topic 17
The Bell LaPadula Model
Readings for This Lecture

- Wikipedia
 - Bell-LaPadula model
- David E. Bell: Looking Back at the Bell-La Padula Model
Access Control at Different Abstractions

• Using principals
 – Determines which principals (user accounts) can access what documents

• Using subjects
 – Determines which subjects (processes) can access what resources
 – This is where BLP focuses on
Multi-Level Security (MLS)

- There are security classifications or security levels
 - Users/principals/subjects have security clearances
 - Objects have security classifications

- Example of security levels
 - Top Secret
 - Secret
 - Confidential
 - Unclassified

- In this case Top Secret > Secret > Confidential > Unclassified

- Security goal (confidentiality): ensures that information do not flow to those not cleared for that level
Multi-level Security (MLS)

- The capability of a computer system to carry information with different sensitivities (i.e. classified information at different security levels), permit simultaneous access by users with different security clearances and needs-to-know, and prevent users from obtaining access to information for which they lack authorization.
 - Discretionary access control fails to achieve MLS
- Typically use Mandatory Access Control
- Primary Security Goal: Confidentiality
Mandatory Access Control

- Mandatory access controls (MAC) restrict the access of subjects to objects based on a system-wide policy
 - denying users full control over the access to resources that they create. The system security policy (as set by the administrator) entirely determines the access rights granted
Bell-LaPadula Model: A MAC Model for Achieving Multi-level Security

• Introduce in 1973

• Air Force was concerned with security in time-sharing systems
 – Many OS bugs
 – Accidental misuse

• Main Objective:
 – Enable one to formally show that a computer system can securely process classified information
What is a Security Model?

- A **model** describes the system
 - e.g., a high level specification or an abstract machine description of what the system does
- A **security policy**
 - defines the security requirements for a given system
- **Verification techniques** that can be used to show that a policy is satisfied by a system
- **System Model + Security Policy = Security Model**
Approach of BLP

• Use state-transition systems to describe computer systems

• Define a system as secure iff. every reachable state satisfies 3 properties
 – simple-security property, *-property, discretionary-security property

• Prove a Basic Security Theorem (BST)
 – so that given the description of a system, one can prove that the system is secure
The BLP Security Model

- A computer system is modeled as a state-transition system
 - There is a set of subjects; some are designated as trusted.
 - Each state has objects, an access matrix, and the current access information.
 - There are state transition rules describing how a system can go from one state to another
 - Each subject s has a maximal sec level $L_m(s)$, and a current sec level $L_c(s)$
 - Each object has a classification level
Elements of the BLP Model

- **Subjects**
 - Trusted Subjects

- **Objects**
 - Current Accesses
 - Access Matrix
 - Security levels, e.g.: \{TS, S, C, U\}

- **L_m**: Max Sec. Level
- **L_c**: Current Sec. Level
- **L**: Class. Level
The BLP Security Policy

- A state is secure if it satisfies
 - Simple Security Condition (no read up):
 • S can read O iff $L_m(S) \geq L(O)$
 - The Star Property (no write down): for any S that is not trusted
 • S can read O iff $L_c(S) \geq L(O)$ (no read up)
 • S can write O iff $L_c(S) \leq L(O)$ (no write down)
 - Discretionary-security property
 • every access is allowed by the access matrix
- A system is secure if and only if every reachable state is secure.
Implication of the BLP Policy

Subject

Max Level

Current Level

Objects

Highest

Can Write

Can Read & Write

Can Read

Lowest
STAR-PROPERTY

- Applies to subjects not to principals and users
- Users are trusted (must be trusted) not to disclose secret information outside of the computer system
- Subjects are not trusted because they may have Trojan Horses embedded in the code they execute
- Star-property prevents overt leakage of information and does not address the covert channel problem
Is BLP Notion of Security Good?

- The objective of BLP security is to ensure
 - a subject cleared at a low level should never read
 information classified high

- The ss-property and the *-property are sufficient to stop such information flow at any given state.

- What about information flow across states?
BLP Security Is Not Sufficient!

• Consider a system with \(s_1, s_2, o_1, o_2 \)
 \[f_S(s_1) = f_C(s_1) = f_O(o_1) = \text{high} \]
 \[f_S(s_2) = f_C(s_2) = f_O(o_2) = \text{low} \]

• And the following execution
 \(s_1 \) gets access to \(o_1 \), read something, release access, then change current level to low, get write access to \(o_2 \), write to \(o_2 \)

• Every state is secure, yet illegal information exists

• Solution: tranquility principle: subject cannot change current levels, or cannot drop to below the highest level read so far
Main Contributions of BLP

- The overall methodology to show that a system is secure
 - adopted in many later works
- The state-transition model
 - which includes an access matrix, subject security levels, object levels, etc.
- The introduction of *-property
 - ss-property is not enough to stop illegal information flow
Other Limitations with BLP

- Deal only with confidentiality, does not deal with integrity at all
 - Confidentiality is often not as important as integrity in most situations
 - Addressed by integrity models (such as Biba, Clark-Wilson, which we will cover later)

- Does not deal with information flow through covert channels
Overt (Explicit) Channels vs. Covert Channels

- Security objective of MLS in general, BLP in particular
 - high-classified information cannot flow to low-cleared users
- Overt channels of information flow
 - read/write an object
- Covert channels of information flow
 - communication channel based on the use of system resources not normally intended for communication between the subjects (processes) in the system
Examples of Covert Channels

- Using file lock as a shared boolean variable
- By varying its ratio of computing to input/output or its paging rate, the service can transmit information to a concurrently running process
- Timing of packets being sent

- Covert channels are often noisy
- However, information theory and coding theory can be used to encode and decode information through noisy channels
More on Covert Channels

• Covert channels cannot be blocked by *-property
• It is generally very difficult, if not impossible, to block all covert channels
• One can try to limit the bandwidth of covert channels
• Military requires cryptographic components be implemented in hardware
 – to avoid trojan horse leaking keys through covert channels
More on MLS: Security Levels

- Used as attributes of both subjects & objects
 - clearance & classification
- Typical military security levels:
 - top secret ≥ secret ≥ confidential ≥ unclassified
- Typical commercial security levels
 - restricted ≥ proprietary ≥ sensitive ≥ public
Security Categories

• Also known as compartments

• Typical military security categories
 – army, navy, air force
 – nato, nasa, noforn

• Typical commercial security categories
 – Sales, R&D, HR
 – Dept A, Dept B, Dept C
Security Labels

- Labels = Levels × P (Categories)
- Define an ordering relationship among Labels
 - (e1, C1) ≤ (e2, C2) iff. e1 ≤ e2 and C1 ⊆ C2
- This ordering relation is a partial order
 - reflexive, transitive, anti-symmetric
 - e.g., ⊆
- All security labels form a lattice
An Example Security Lattice

- levels={top secret, secret}
- categories={army, navy}
Coming Attractions …

- Non-interference and non-deducability