
CS526 Topic 16: Analyzing DAC 1

Information Security

CS 526
Topic 16

Analysis of DAC’s Weaknesses

Why Computers are Vulnerable?

• Programs are buggy

• Humans make mistakes

• Access control is not good enough

– Discretionary Access Control (DAC) used in Unix and

Windows assume that programs are not buggy

CS526 Topic 16: Analyzing DAC 2

Access Control Check

• Given an access request, return an access control

decision based on the policy

– allow / deny

Access

Control Check
A Request Allow / Deny

The Policy

3 Topic 16: Analyzing DAC CS526

CS526 Topic 16: Analyzing DAC 4

Discretionary Access Control

• No precise definition. Basically, DAC allows access

rights to be propagated at subject’s discretion

– often has the notion of owner of an object

– used in UNIX, Windows, etc.

• According to TCSEC (Trusted Computer System

Evaluation Criteria)

– "A means of restricting access to objects based on the identity

and need-to-know of users and/or groups to which they

belong. Controls are discretionary in the sense that a subject

with a certain access permission is capable of passing that

permission (directly or indirectly) to any other subject."

Analysis why DAC is not Good

enough

• DAC causes the Confused Deputy problem

– Solution: use capability-based systems

• DAC does not preseves confidentiality when facing

Trojan horses

– Solution: use Mandatory Access Control (BLP)

• DAC implementation fails to keep track of for which

principals a subject (process) is acting on behalf of

– Solution: fixing the DAC implementation to better keep track of

principals

CS526 Topic 16: Analyzing DAC 5

The Confused Deputy Problem

CS526 Topic 16: Analyzing DAC 6

SYSX/FORT $OUTPUT

Compiler Program

SYSX (Dir)

 FORT

 STAT

 BILL

Write to

the bill

file

System

Admin

$Output SYSX/BILL

Write

output

file

User

The Confused Deputy by Norm Hardy

CS526 Topic 16: Analyzing DAC 7

Analysis of The Confused Deputy

Problem

• The compiler runs with authority from two

sources

– the invoker (i.e., the programmer)

– the system admin (who installed the compiler and

controls billing and other info)

• It is the deputy of two masters

• There is no way to tell which master the deputy is

serving when performing a write

• Solution: Use capability

CS526 Topic 16: Analyzing DAC 8

ACCESS MATRIX MODEL

U
r w
own

V

F

S
u
b
j
e
c
t
s

Objects (and Subjects)

r w
own

G

r

rights

CS526 Topic 16: Analyzing DAC 9

IMPLEMENTATION OF

AN ACCESS MATRIX

• Access Control Lists

– Encode columns

• Capabilities

– Encode rows

• Access control triples

– Encode cells

CS526 Topic 16: Analyzing DAC 10

ACCESS CONTROL LISTS (ACLs)

F

U:r

U:w

U:own

G

U:r

V:r

V:w

V:own

each column of the access matrix is stored with
the object corresponding to that column

CS526 Topic 16: Analyzing DAC 11

CAPABILITY LISTS

each row of the access matrix is stored with the
subject corresponding to that row

U F/r, F/w, F/own, G/r

V G/r, G/w, G/own

CS526 Topic 16: Analyzing DAC 12

ACCESS CONTROL TRIPLES

Subject Access Object

 U r F

 U w F

 U own F

 U r G

 V r G

 V w G

 V own G

commonly used in relational DBMS

Different Notions of Capabilities

• Capabilities as a row representation of Access Matrices

• Capabilities used in Linux as a way to divide the root

power into multiple pieces that can be given out

separately

• Capabilities as a way of implementing the whole access

control systems

– Subjects have capabilities, which can be passed around

– When access resources, subjects select capabilities to access

• An example is open file descriptors

– We will examine this last notion in more depth

CS526 Topic 16: Analyzing DAC 13

More on Capability Based Access

Control

• Subjects have capabilities, which

– Give them accesses to resources

• E.g., like keys

– Are transferable and unforgeable tokens of authority

• Can be passed from one process to another

– Similar to opened file descriptors

• Why capabilities may solve the confused deputy

problems?

– When access a resource, must select a capability,

which also selects a master

CS526 Topic 16: Analyzing DAC 14

CS526 Topic 16: Analyzing DAC 15

How the Capability Approach Solves

the Confused Deputy Problem

SYSX/FORT $OUTPUT

1 2 3

SYSX/ STAT SYSX/ BILL $OUTPUT

•Invoker must pass in a capability for $OUTPUT, which is

stored in slot 3.

•Writing to output uses the capability in slot 3.

•Invoker cannot pass a capability it doesn’t have.

Capability vs. ACL

• Consider two security mechanisms for bank accounts.

• One is identity-based. Each account has multiple

authorized owners. You go into the bank and shows your

ID, then you can access all accounts you are authorized.

– Once you show ID, you can access all accounts.

– You have to tell the bank which account to take money from.

• The other is token-based. When opening an account,

you get a passport to that account and a PIN, whoever

has the passport and the PIN can access

CS526 Topic 16: Analyzing DAC 16

CS526 Topic 16: Analyzing DAC 17

Capabilities vs. ACL: Ambient

Authority

• Ambient authority means that a user’s authority

is automatically exercised, without the need of

being selected.

– causes the confused deputy problem

• No Ambient Authority in capability systems

CS526 Topic 16: Analyzing DAC 18

Capability vs. ACL: Naming

• ACL systems need a namespace for objects

• In capability systems, a capability can serve both
to designate a resource and to provide authority.

• ACLs also need a namespace for subjects or
principals
– as they need to refer to subjects or principals

• Implications
– the set of subjects cannot be too many or too dynamic

– most ACL systems grant rights to user accounts
principals, and do not support fine-grained subject
rights management

CS526 Topic 16: Analyzing DAC 19

Conjectures on Why Most Real-world

OS Use ACL, rather than Capabilities

• Capability is more suitable for process level

sharing, but not user-level sharing

– user-level sharing is what is really needed

• Processes are more tightly coupled in capability-

based systems because the need to pass

capabilities around

– programming may be more difficult

CS526 Topic 16: Analyzing DAC 20

INHERENT WEAKNESS OF DAC

• Unrestricted DAC allows information flows
from an object which can be read to any other
object which can be written by a subject

– Suppose A is allowed to read some information
and B is not, A can reads and tells B

• Suppose our users are trusted not to do this
deliberately. It is still possible for Trojan
Horses to copy information from one object to
another.

CS526 Topic 16: Analyzing DAC 21

TROJAN HORSE EXAMPLE

File F
A:r

A:w

File G
B:r

A:w

Principal B cannot read file F

ACL

CS526 Topic 16: Analyzing DAC 22

TROJAN HORSE EXAMPLE

File F
A:r

A:w

File G
B:r

A:w

Principal B can read contents of file F copied to file G

ACL Principal A

Program Goodies

 Trojan Horse

executes

read

write

CS526 Topic 16: Analyzing DAC 23

Buggy Software Can Become Trojan

Horse

• When a buggy software is exploited, it execute

the code/intention of the attacker, while using the

privileges of the user who started it.

• This means that computers with only DAC

cannot be trusted to process information

classified at different levels

– Mandatory Access Control is developed to address

this problem

– We will cover this in the next topic

DAC’s Weaknesses Caused by The

Gap

• A request: a subject wants to perform an action

– E.g., processes in OS

• The policy: each principal has a set of privileges

– E.g., user accounts in OS

• Challenging to fill the gap between the subjects

and the principals

– relate the subject to the principals

24 Topic 16: Analyzing DAC CS526

Unix DAC Revisited (1)

CS526 Topic 16: Analyzing DAC 25

Action Process Effective

UID

Real

Principals

User A Logs In shell User A User A

Load Binary “Goodie”

Controlled by user B

Goodie User A ? ?

•When the Goodie process issues a request, what principal(s)

is/are responsible for the request?

•Under what assumption, it is correct to say that User A is

responsible for the request?

Assumption: Programs are benign, i.e., they only do

what they are told to do.

UNIX DAC Revisited (2)

CS526 Topic 16: Analyzing DAC 26

Action Process Effective

UID

Real

Principals

 shell User A User A

Load AcroBat Reader Binary AcroBat User A User A

Read File Downloaded from

Network

AcroBat User A ? ?

•When the AcroBat process (after reading the file) issues a

request, which principal(s) is/are responsible for the request?

•Under what assumption, it is correct to say that User A is

responsible for the request?

Assumption: Programs are correct, i.e., they handle

inputs correctly.

Why DAC is vulnerable?

• Implicit assumptions

– Software are benign, i.e., behave as intended

– Software are correct, i.e., bug-free

• The reality

– Malware are popular

– Software are vulnerable

• The problem is not caused by the discretionary

nature of policy specification!

– i.e., owners can set policies for files

27 Topic 16: Analyzing DAC CS526

Why DAC is Vulnerable? (cont’)

• A deeper reason in the enforcement mechanism

– A single invoker is not enough to capture the origins of a process

• When the program is a Trojan

– The program-provider should be responsible for the requests

• When the program is vulnerable

– It may be exploited by input-providers

– The requests may be issued by injected code from input-

providers

• Solution: include input-providers as the principals

28 Topic 16: Analyzing DAC CS526

CS526 Topic 16: Analyzing DAC 29

Coming Attractions …

• The Bell LaPadula Model

