
CS526 Topic 5: Hash Functions and

Message Authentication

1

Computer Security

CS 526
Topic 5

Cryptography: Cryptographic Hash Functions

And Message Authentication Code

Announcements

• Quiz 1 will be on Sept 16, covering topics 1-5

• Mid-term exam tentatively scheduled to be

Tuesday Oct 21, during lecture time

CS526 Topic 5: Hash Functions and

Message Authentication

2

CS526 Topic 5: Hash Functions and

Message Authentication

3

Readings for This Lecture

• Wikipedia
• Cryptographic Hash

Functions

• Message Authentication

Code

http://en.wikipedia.org/wiki/Cryptographic_hash_function
http://en.wikipedia.org/wiki/Cryptographic_hash_function
http://en.wikipedia.org/wiki/Message_authentication_code
http://en.wikipedia.org/wiki/Message_authentication_code

CS526 Topic 5: Hash Functions and

Message Authentication

4

Data Integrity and Source

Authentication

• Encryption does not protect data from modification
by another party.

• Most encryption schemes are malleable:
– Modifying ciphertext result in (somewhat) predictable

change in plaintext

• Need a way to ensure that data arrives at destination
in its original form as sent by the sender.

Hash Functions

• A hash function maps a message of an arbitrary length to

a m-bit output

– output known as the fingerprint or the message digest

• What is an example of hash functions?

– Give a hash function that maps Strings to integers in [0,2^{32}-1]

• Cryptographic hash functions are hash functions with

additional security requirements

CS526 Topic 5: Hash Functions and

Message Authentication

5

CS526 Topic 5: Hash Functions and

Message Authentication

6

Using Hash Functions for Message

Integrity

• Method 1: Uses a Hash Function h, assuming an

authentic (adversary cannot modify) channel for short

messages

– Transmit a message M over the normal (insecure) channel

– Transmit the message digest h(M) over the authentic channel

– When receiver receives both M’ and h, how does the receiver

check to make sure the message has not been modified?

• This is insecure. How to attack it?

• A hash function is a many-to-one function, so collisions

can happen.

CS526 Topic 5: Hash Functions and

Message Authentication

7

Security Requirements for

Cryptographic Hash Functions

 Given a function h:X Y, then we say that h is:

• preimage resistant (one-way):

 if given y Y it is computationally infeasible to find a

value x X s.t. h(x) = y

• 2-nd preimage resistant (weak collision resistant):

 if given x  X it is computationally infeasible to find a

value x’  X, s.t. x’x and h(x’) = h(x)

• collision resistant (strong collision resistant):

 if it is computationally infeasible to find two distinct

values x’,x  X, s.t. h(x’) = h(x)

CS526 Topic 5: Hash Functions and

Message Authentication

8

Usages of Cryptographic Hash

Functions

• Software integrity

– E.g., tripwire

• Timestamping (cryptographic commitment)

– How to prove that you have discovered a secret on an

earlier date without disclosing the context of a secret?

• Covered later

– Message authentication

– One-time passwords

– Digital signature

CS526 Topic 5: Hash Functions and

Message Authentication

9

Bruteforce Attacks on Hash Functions

• Attacking one-wayness

– Goal: given h:XY, yY, find x such that h(x)=y

– Algorithm:

• pick a random value x in X, check if h(x)=y, if

h(x)=y, returns x; otherwise iterate

• after failing q iterations, return fail

– The average-case success probability is

• The first approximation holds when |Y| is large,

• The second roughly holds when q/|Y| is small (e.g., < 0.5)

– Let |Y|=2m, to get  to be close to 0.5, q 2m-1

||
1

||
111 ||

Y

q
e

Y
Y

qq







 





CS526 Topic 5: Hash Functions and

Message Authentication

10

Bruteforce Attacks on Hash Functions

• Attacking collision resistance

– Goal: given h, find x, x’ such that h(x)=h(x’)

– Algorithm: pick a random set X0 of q values in X

 for each xX0, computes yx=h(x)

 if yx=yx’ for some x’x then return (x,x’) else fail

– The average success probability is

– Let |Y|=2m, to get  to be close to 0.5, q 2m/2

– This is known as the birthday attack.

 1
||

1
11 ||2

)1(
2

)1(

Y

qq
qq

e
Y
















Choosing Parameters

• The level of security (for collision resistance) of a

hash function that outputs n bits, is about n/2 bits

– i.e., it takes 2n/2 time to bruteforce it

– Assuming that no better way of attacking the hash

function is known

• Longer outputs often means more computation

time and more communication overhead

• The level of security for encryption function using

k-bit key is about k bits

CS526 Topic 5: Hash Functions and

Message Authentication

11

CS526 Topic 5: Hash Functions and

Message Authentication

12

Choosing the length of Hash outputs

• The Weakest Link Principle:

– A system is only as secure as its weakest link.

– Hence all links in a system should have similar levels

of security.

• Because of the birthday attack, the length of hash outputs

in general should double the key length of block ciphers

– SHA-224 matches the 112-bit strength of triple-DES (encryption 3

times using DES)

– SHA-256, SHA-384, SHA-512 match the new key lengths

(128,192,256) in AES

– If small output size is highly important, and one is sure that

collision-resistance is not needed (only one-wayness is needed),

then same size should be okay.

CS526 Topic 5: Hash Functions and

Message Authentication

13

Well Known Hash Functions

• MD5

– output 128 bits

– collision resistance completely broken by researchers in China in

2004

• SHA1

– output 160 bits

– no collision found yet, but method exist to find collisions in less

than 2^80

– considered insecure for collision resistance

– one-wayness still holds

• SHA2 (SHA-224, SHA-256, SHA-384, SHA-512)

– outputs 224, 256, 384, and 512 bits, respectively

– No real security concerns yet

• SHA3 (224, 256, 384, 512)

Merkle-Damgard Construction for

Hash Functions

CS526 Topic 5: Hash Functions and

Message Authentication

14

• Message is divided into fixed-size blocks and padded

• Uses a compression function f, which takes a chaining variable (of

size of hash output) and a message block, and outputs the next

chaining variable

• Final chaining variable is the hash value

M=m1m2…mn; C0=IV, Ci+1=f(Ci,mi); H(M)=Cn

NIST SHA-3 Competition

• NIST completed a competition for SHA-3, the next generation of

standard hash algorithms

• 2007: Request for submissions of new hash functions

• 2008: Submissions deadline. Received 64 entries. Announced first-

round selections of 51 candidates.

• 2009: After First SHA-3 candidate conference in Feb, announced 14

Second Round Candidates in July.

• 2010: After one year public review of the algorithms, hold second

SHA-3 candidate conference in Aug. Announced 5 Third-round

candidates in Dec.

• 2011: Public comment for final round

• 2012: October 2, NIST selected SHA3

– Keccak (pronounced “catch-ack”) created by Guido Bertoni, Joan Daemen and

Gilles Van Assche, Michaël Peeters

CS526 Topic 5: Hash Functions and

Message Authentication

15

The Sponge Construction: Used by

SHA-3

CS526 Topic 5: Hash Functions and

Message Authentication

16

• Each round in the input phase, the next r bits of message is XOR’ed into

the first r bits of the state, and a function f is applied to the state.

• In the output phase, output r bits of each round as the hash output;

continue applying f to get new states

– Only a portion of the state is affected in each round, and only a portion of the

state is revealed in each output round

• SHA-3 uses 1600 bits for state size

CS526 Topic 5: Hash Functions and

Message Authentication

17

Limitation of Using Hash Functions

for Authentication

• Require an authentic channel to transmit the

hash of a message

– Without such a channel, it is insecure, because

anyone can compute the hash value of any message,

as the hash function is public

– Such a channel may not always exist

• How to address this?

– use more than one hash functions

– use a key to select which one to use

CS526 Topic 5: Hash Functions and

Message Authentication

18

Hash Family

• A hash family is a four-tuple (X,Y,K,H), where

– X is a set of possible messages

– Y is a finite set of possible message digests

– K is the keyspace

– For each KK, there is a hash function hKH . Each

hK: X Y

• Alternatively, one can think of H as a function

KXY

CS526 Topic 5: Hash Functions and

Message Authentication

19

Message Authentication Code

(MAC)
• A MAC scheme is a hash family, used for message

authentication

• MAC(K,M) = HK(M)

• The sender and the receiver share secret K

• The sender sends (M, Hk(M))

• The receiver receives (X,Y) and verifies that HK(X)=Y, if
so, then accepts the message as from the sender

• To be secure, an adversary shouldn’t be able to come up
with (X’,Y’) such that HK(X’)=Y’.

MAC: Using a shared secret (or a limit-bandwidth

confidential channel) to achieve authenticity/integrity.

Security Requirements for MAC

• Secure against the “Existential Forgery under

Chosen Plaintext Attack”

– Challenger chooses a random key K

– Adversary chooses a number of messages M1, M2, ..,

Mn, and obtains tj=MAC(K,Mj) for 1jn

– Adversary outputs M’ and t’

– Adversary wins if j M’≠Mj, and t’=MAC(K,M’)

• Basically, adversary cannot create the MAC value for a

message for which it hasn’t seen an MAC

CS526 Topic 5: Hash Functions and

Message Authentication

20

Constructing MAC from Hash

Functions

• Let h be a one-way hash function

• MAC(K,M) = h(K || M), where || denote

concatenation

– Insecure as MAC with a hash function that uses the

Merkle-Damgard construction:

– given M and t=h(K || M), adversary can compute

M’=M||Pad(M)||X and t’, such that h(K||M’) = t’

CS526 Topic 5: Hash Functions and

Message Authentication

21

CS526 Topic 5: Hash Functions and

Message Authentication

22

HMAC: Constructing MAC from

Cryptographic Hash Functions

• K+ is the key padded (with 0) to B bytes, the

input block size of the hash function

• ipad = the byte 0x36 repeated B times

• opad = the byte 0x5C repeated B times.

HMACK[M] = Hash[(K+  opad) || Hash[(K+  ipad)||M)]]

At high level, HMACK[M] = H(K || H(K || M))

Hash function is used twice, in nested fashion.

CS526 Topic 5: Hash Functions and

Message Authentication

23

HMAC Security

• If used with a secure hash functions (e.g.,

SHA-256) and according to the specification

(key size, and use correct output), no known

practical attacks against HMAC

CS526 Topic 5: Hash Functions and

Message Authentication

24

Coming Attractions …

• Cryptography: Public Key

Cryptography

