
CS526 1

Information Security

CS 526
Topic 12-13

Software Vulnerabilities

Topic 12-13: Software

Vulnerabilities

CS526 Topic 12-13: Software

Vulnerabilities

2

Readings for This Lecture

• Wikipedia
• Privilege escalation

• Directory traversal

• Time-of-check-to-time-of-use

• Buffer overflow

• Stack buffer overflow

• Buffer overflow protection

• Format string attack

• Integer overflow

• Smashing The Stack For

Fun And Profit by Aleph

One

http://doc.bughunter.net/buffer-overflow/smash-stack.html
http://doc.bughunter.net/buffer-overflow/smash-stack.html
http://doc.bughunter.net/buffer-overflow/smash-stack.html
http://en.wikipedia.org/wiki/Filesystem_permissions

Why Software Vulnerabilities

Matter?

• When a process reads input from attacker, the process

may be exploited if it contains vulnerabilities.

• When an attacker successfully exploits a vulnerability, he

can
– Crash programs: Compromises availability

– Execute arbitrary code: Compromises integrity

– Obtain sensitive information: Compromises confidentiality

• Software vulnerability enables the attacker to run with

privileges of other users, violating desired access control

policy

CS526 Topic 12-13: Software

Vulnerabilities

3

Attacks Exploiting Software

Vulnerabilities

• Drive-by download (drive-by installation)

– malicious web contents exploit vulnerabilities in

browsers (or plugins) to download/install malware on

victim system.

• Email attachments in PDF, Word, etc.

• Network-facing daemon programs (such as http,

ftp, mail servers, etc.) as entry points.

• Privilege escalation
– Attacker on a system exploits vulnerability in a root process and

gains root privilege

CS526 Topic 12-13: Software

Vulnerabilities

4

CS526 Topic 12-13: Software

Vulnerabilities

5

Common Software Vulnerabilities

• Input validation

• Race conditions

– Time-of-check-to-time-of-use (TOCTTOU)

• Buffer overflows

• Format string problems

• Integer overflows

CS526 Topic 12-13: Software

Vulnerabilities

6

Sources of Input that Need

Validation

• What are sources of input for local applications?

– Command line arguments

– Environment variables

– Configuration files, other files

– Inter-Process Communication call arguments

– Network packets

• What are sources of input for web applications?

– Web form input

– Scripting languages with string input

CS526 Topic 12-13: Software

Vulnerabilities

7

Command line as a Source of

Input: A Simple example
void main(int argc, char ** argv) {

 char buf[1024];

 sprintf(buf,”cat %s”,argv[1]);

 system (“buf”);

}

What can go wrong?

• Can easily add things to the command by adding ;

• User can set command line arguments to almost
anything, e.g., by using execve system call to start a
program, the invoker has complete control over all
command line arguments.s

CS526 Topic 12-13: Software

Vulnerabilities

8

Environment variables

• Users can set the environment variables to

anything

– Using execve

– Has some interesting consequences

• Examples:

– PATH

– LD_LIBRARY_PATH

– IFS

CS526 Topic 12-13: Software

Vulnerabilities

9

Attack by Resetting PATH

• A setuid program has a system call: system(ls);

• The user sets his PATH to be . (current directory)

and places a program ls in this directory

• The user can then execute arbitrary code as the

setuid program

• Solution: Reset the PATH variable to be a

standard form (i.e., “/bin:/usr/bin”)

CS526 Topic 12-13: Software

Vulnerabilities

10

Attack by Resetting IFS

• However, you must also reset the IFS variable

– IFS is the characters that the system considers as

white space

• If not, the user may add “s” to the IFS

– system(ls) becomes system(l)

– Place a function l in the directory

• Morale: things are intricately related and inputs

can have unexpected consequences

CS526 Topic 12-13: Software

Vulnerabilities

11

Attack by Resetting

LD_LIBRARY_PATH

• Assume you have a setuid program that loads
dynamic libraries

• UNIX searches the environment variable
LD_LIBRARY_PATH for libraries

• A user can set LD_LIBRARY_PATH to
/tmp/attack and places his own copy of the
libraries here

• Most modern C runtime libraries have fixed this
by not using the LD_LIBRARY_PATH variable
when the EUID is not the same as the RUID or
the EGID is not the same as the RGID

Input Validation Issues in Web

Applications

• SQL injection

– Caused by failure to validate/process inputs from web

forms before using them to create SQL queries

• Cross Site Scripting

– Caused by failure to validate/process inputs from web

forms or URL before using them to create the web

page

• Cross Site Request Forgery is not an input

validation issue

• Next few slides show more web app input

validation attacks
CS526 Topic 12-13: Software

Vulnerabilities

12

CS526 Topic 12-13: Software

Vulnerabilities

13

A Remote Example: PHP passthru

• Idea

– PHP passthru(string) executes command

– Web-pages can construct string from user input and execute the

commands to generate web content

– Attackers can put “;” in input to run desired commands

• Example
echo 'Your usage log:
';

$username = $_GET['username'];

passthru(“cat /logs/usage/$username”);

• What if: “username=andrew;cat%20/etc/passwd”?

Directory Traversal Vulnerabilities

in Web Applications

• A typical example of vulnerable application in php

code is:

<?php

 $template = 'red.php';

 if (isset($_COOKIE['TEMPLATE']))

$template = $_COOKIE['TEMPLATE'];

include ("/home/users/phpguru/templates/" . $template);

?>

• Attacker sends

 GET /vulnerable.php HTTP/1.0

 Cookie: TEMPLATE=../../../../../../../../../etc/passwd

CS526 Topic 12-13: Software

Vulnerabilities

14

CS526 Topic 12-13: Software

Vulnerabilities

15

Checking input can be tricky: Unicode

vulnerabilities

• Some web servers check string input

– Disallow sequences such as ../ or \

– But may not check unicode %c0%af for '/'

• IIS Example, used by Nimda worm

– passes <some command> to cmd command

– scripts directory of IIS has execute permissions

• Input checking would prevent that, but not this

– IIS first checks input, then expands unicode

http://victim.com/scripts/../../winnt/system32/cmd.exe?<some command>

http://victim.com/scripts/..%c0%af..%c0%afwinnt/system32/...

Input Validation Summary

• Lessons:
– Malicious inputs can become code, or change the

logic to do things that are not intended

– Inputs interact with each other, sometimes in subtle
ways

• Use systematic approaches to deal with input
validation
– Avoid checking for bad things (blacklisting) if possible

• The logic for blacklisting may not be exhaustive

• Code where input is used may have different logic

– Instead, check for things that are allowed (whitelisting)

– Or, use systematic rewriting

CS526 Topic 12-13: Software

Vulnerabilities

16

Time-of-check-to-time-of-use

• TOCTTOU, pronounced "TOCK too“

• A class of software bug caused by changes in a

system between the checking of a condition (such

as authorization) and use of the results of the

check.

– When a process P requests to access resource X, the

system checks whether P has right to access X; the

usage of X happens later

– When the usage occurs, perhaps P should not have

access to X anymore.

– The change may be because P changes or X changes.

CS526 Topic 12-13: Software

Vulnerabilities

17

An Example TOCTTOU

• In Unix, the following C code, when used in a setuid

program, is a TOCTTOU bug:

if (access("file", W_OK) != 0)

 { exit(1); }

fd = open("file", O_WRONLY);

write(fd, buffer, sizeof(buffer));

• Here, access is intended to check whether the real user who

executed the setuid program would normally be allowed to write the

file (i.e., access checks the real userid rather than effective userid).

 CS526 Topic 12-13: Software

Vulnerabilities

18

Attacker tries to execute the

following line in another process

when this process reaches exactly

this time:

Symlink(“/etc/passwd”, “file”)

TOCTTOU

• Exploiting a TOCTTOU vulnerabilities requires

precise timing of the victim process.

– Can run the attack multiple times, hoping to get lucky

• Most general attack may require “single-

stepping” the victim, i.e., can schedule the

attacker process after each operation in the

victim

– Techniques exist to “single-step” victim

• Preventing TOCTTOU attacks is difficult

CS526 Topic 12-13: Software

Vulnerabilities

19

CS526 Topic 12-13: Software

Vulnerabilities

20

What is Buffer Overflow?

• A buffer overflow, or buffer overrun, is an anomalous

condition where a process attempts to store data beyond

the boundaries of a fixed-length buffer.

• The result is that the extra data overwrites adjacent

memory locations. The overwritten data may include

other buffers, variables and program flow data, and may

result in erratic program behavior, a memory access

exception, program termination (a crash), incorrect

results or ― especially if deliberately caused by a

malicious user ― a possible breach of system security.

• Most common with C/C++ programs

CS526 Topic 12-13: Software

Vulnerabilities

21

History

• Used in 1988’s Morris Internet Worm

• Alphe One’s “Smashing The Stack For Fun And

Profit” in Phrack Issue 49 in 1996 popularizes

stack buffer overflows

• Still extremely common today

CS526 Topic 12-13: Software

Vulnerabilities

22

Types of Buffer Overflow Attacks

• Stack overflow

– Shell code

– Return-to-libc

• Overflow sets ret-addr to address of libc function

– Off-by-one

– Overflow function pointers & longjmp buffers

• Heap overflow

CS526 Topic 12-13: Software

Vulnerabilities

23

Linux process memory layout

Unused
0x08048000

Run time heap

Shared libraries

User Stack

0x40000000

0xC0000000

%esp

Loaded
from exec

0

CS526 Topic 12-13: Software

Vulnerabilities

24

Stack Frame

Parameters

Return address

Stack Frame Pointer

Local variables

SP

Stack
Growth

CS526 Topic 12-13: Software

Vulnerabilities

25

What are buffer overflows?

• Suppose a web server contains a function:

 void func(char *str) {

 char buf[128];

 strcpy(buf, str);

 do-something(buf);

 }

• When the function is invoked the stack looks like:

• What if *str is 136 bytes long? After strcpy:

str ret-addr sfp buf

str *str ret

CS526 Topic 12-13: Software

Vulnerabilities

26

Basic stack exploit

• Main problem: no range checking in strcpy().

• Suppose *str is such that after strcpy stack looks like:

• When func() exits, the user will be given a shell !!

• Note: attack code runs in stack.

top
of

stack
 *str ret Code for P

Program P: exec(“/bin/sh”)

(exact shell code by Aleph One)

Carrying out this attack requires

• Determine the location of injected code position

on stack when func() is called.

– So as to change RET on stack to point to it

– Location of injected code is fixed relative to the

location of the stack frame

• Program P should not contain the ‘\0’ character.

– Easy to achieve

• Overflow should not crash program before func()

exits.

CS526 Topic 12-13: Software

Vulnerabilities

27

CS526 Topic 12-13: Software

Vulnerabilities

28

Some unsafe C lib functions

 strcpy (char *dest, const char *src)

 strcat (char *dest, const char *src)

 gets (char *s)

 scanf (const char *format, …)

 sprintf (conts char *format, …)

CS526 Topic 12-13: Software

Vulnerabilities

29

Other control hijacking opportunities

• In addition to overwrite return address on the stack, can

also use overflow to overwrite the following:

• Function pointers: (used in attack on PHP 4.0.2)

– Overflowing buf will override function pointer.

• Longjmp buffers: longjmp(pos) (used in attack on Perl 5.003)

– Overflowing buf next to pos overrides value of pos.

Heap
or

stack
 buf[128] FuncPtr

return-to-libc attack

• “Bypassing non-executable-stack during

exploitation using return-to-libs” by c0ntex

• Overflow ret address to point to injected shell

code requires execution of injected code

– Many defenses exist

• Return-to-libc overwrites the return address to

point to functions in libc (such as system())

– Executing existing code

– But set up the parameters so that the attacker gets a

shell

CS526 Topic 12-13: Software

Vulnerabilities

30

CS526 Topic 12-13: Software

Vulnerabilities

31

return-to-libc attack

• Illustrating return-to-libc attack

 *str ret Code for P

Shell code attack: Program P: exec(“/bin/sh”)

 *str ret fake_ret

system() in libc

Return-to-libc attack: “/bin/sh”

Return-oriented programming

• Goal: executing arbitrary code without injecting any code.

• Observations:

– Almost all instructions already exist in the process’s address

space, but need to piece them together to do what the attacker

wants

• Attack:

– Find instructions that are just before “return”

– Set up the stack to include a sequence of addresses so that

executing one instruction is followed by returning to the next one

in the sequence.

• Effectiveness: has been shown that arbitrary program

can be created this way

CS526 Topic 12-13: Software

Vulnerabilities

32

CS526 Topic 12-13: Software

Vulnerabilities

33

Off by one buffer overflow

• Sample code

 func f(char *input) {

 char buf[LEN];

 if (strlen(input) <= LEN) {

 strcpy(buf, input)

 }

 }

What could go wrong here?

CS526 Topic 12-13: Software

Vulnerabilities

34

Heap Overflow

• Heap overflow is a general term that refers to overflow in
data sections other than the stack
– buffers that are dynamically allocated, e.g., by malloc

– statically initialized variables (data section)

– uninitialized buffers (bss section)

• Heap overflow may overwrite other date allocated on
heap

• By exploiting the behavior of memory management
routines, may overwrite an arbitrary memory location with
a small amount of data.
– E.g., SimpleHeap_free() does

• hdr->next->next->prev := hdr->next->prev;

CS526 Topic 12-13: Software

Vulnerabilities

35

Finding buffer overflows

• Hackers find buffer overflows as follows:

– Run web server on local machine.

– Fuzzing: Issue requests with long tags.

 All long tags end with “$$$$$”.

– If web server crashes,

 search core dump for “$$$$$” to find

 overflow location.

• Some automated tools exist.

• Then use disassemblers and debuggers (e..g IDA-Pro)

to construct exploit.

• How to defend against buffer overflow attacks?

CS526 Topic 12-13: Software

Vulnerabilities

36

Preventing Buffer Overflow Attacks

• Use type safe languages (Java, ML).

• Use safe library functions

• Static source code analysis.

• Non-executable stack

• Run time checking: StackGuard, Libsafe, SafeC,
(Purify), and so on.

• Address space layout randomization.

• Detection deviation of program behavior

• Access control to control aftermath of attacks…
(covered later in course)

CS526 Topic 12-13: Software

Vulnerabilities

37

Static source code analysis

• Statically check source code to detect buffer overflows.
– Several consulting companies.

• Main idea: automate the code review process.

• Several tools exist:

– Example: Coverity (Engler et al.): Test trust
inconsistency.

• Find lots of bugs, but not all.

CS526 Topic 12-13: Software

Vulnerabilities

38

• Some examples

• Crash Causing Defects

• Null pointer dereference

• Use after free

• Double free

• Array indexing errors

• Mismatched array new/delete

• Potential stack overrun

• Potential heap overrun

• Return pointers to local variables

• Logically inconsistent code

• Uninitialized variables

• Invalid use of negative values

• Passing large parameters by value

• Underallocations of dynamic data

• Memory leaks

• File handle leaks

• Network resource leaks

• Unused values

• Unhandled return codes

• Use of invalid iterators

Bugs to Detect in Source Code

Analysis

CS526 Topic 12-13: Software

Vulnerabilities

39

Marking stack as non-execute

• Basic stack exploit can be prevented by marking

stack segment as non-executable.

– Support in Windows since XP SP2. Code patches

exist for Linux, Solaris.

 Problems:

– Does not defend against `return-to-libc’ or “return-

oriented programming”.

– Some apps need executable stack (e.g. LISP

interpreters).

– Does not block more general overflow exploits:

• Overflow on heap, overflow func pointer.

CS526 Topic 12-13: Software

Vulnerabilities

40

Run time checking: StackGuard

• There are many run-time checking techniques …

• StackGuard tests for stack integrity.

– Embed “canaries” in stack frames and verify their

integrity prior to function return.

str ret sfp local

top
of

stack
canary str ret sfp local canary

Frame 1 Frame 2

CS526 Topic 12-13: Software

Vulnerabilities

41

Canary Types

• Random canary:

– Choose random string at program startup.

– Insert canary string into every stack frame.

– Verify canary before returning from function.

– To corrupt random canary, attacker must learn
current random string.

• Terminator canary:

 Canary = 0, newline, linefeed, EOF

– String functions will not copy beyond terminator.

– Hence, attacker cannot use string functions to corrupt
stack.

CS526 Topic 12-13: Software

Vulnerabilities

42

Randomization: Motivations.

• Buffer overflow, return-to-libc, and return-oriented

programing exploits need to know the (virtual)

address to which pass control

– Address of attack code in the buffer

– Address of a standard kernel library routine

• Same address is used on many machines

– Slammer infected 75,000 MS-SQL servers using same

code on every machine

• Idea: introduce artificial diversity
– Make stack addresses, addresses of library routines, etc.

unpredictable and different from machine to machine

CS526 Topic 12-13: Software

Vulnerabilities

43

Address Space Layout Randomization

• Arranging the positions of key data areas randomly in a

process' address space.

– e.g., the base of the executable and position of libraries (libc),

heap, and stack,

– Effects: for return to libc, needs to know address of the key

functions.

– Attacks:

• Repetitively guess randomized address

• Spraying injected attack code

• Vista has this enabled, software packages available for

Linux and other UNIX variants

CS526 Topic 12-13: Software

Vulnerabilities

44

Format string problem

 int func(char *user) {
 fprintf(stdout, user);
 }

Problem: what if user = “%s%s%s%s%s%s%s” ??

– Most likely program will crash: DoS.

– If not, program will print memory contents. Privacy?

– Full exploit using user = “%n”

Correct form:

 int func(char *user) {
 fprintf(stdout, “%s”, user);
 }

CS526 Topic 12-13: Software

Vulnerabilities

45

Format string attacks (“%n”)

• printf(“%n”, &x) will change the value of the

variable x

– in other words, the parameter value on the stack is

interpreted as a pointer to an integer value, and the

place pointed by the pointer is overwritten

CS526 Topic 12-13: Software

Vulnerabilities

46

History

• Danger discovered in June 2000.

• Examples:

– wu-ftpd 2.* : remote root.

– Linux rpc.statd: remote root

– IRIX telnetd: remote root

– BSD chpass: local root

CS526 Topic 12-13: Software

Vulnerabilities

47

Vulnerable functions

Any function using a format string.

Printing:

 printf, fprintf, sprintf, …

 vprintf, vfprintf, vsprintf, …

Logging:

 syslog, err, warn

CS526 Topic 12-13: Software

Vulnerabilities

48

Integer Overflow

• Integer overflow: an arithmetic operation attempts to

create a numeric value that is larger than can be

represented within the available storage space.

• Example:

 Test 1:

 short x = 30000;

 short y = 30000;

 printf(“%d\n”, x+y);

Test 2:

 short x = 30000;

 short y = 30000;

 short z = x + y;

 printf(“%d\n”, z);

Will two programs output the same?

What will they output?

C Data Types

• short int 16bits [-32,768; 32,767]

• unsigned short int 16bits [0; 65,535]

• unsigned int 16bits [0; 4,294,967,295]

• Int 32bits

 [-2,147,483,648; 2,147,483,647]

• long int 32 bits

 [-2,147,483,648; 2,147,483,647]

• signed char 8bits [-128; 127]

• unsigned char 8 bits [0; 255]

CS526 Topic 12-13: Software

Vulnerabilities

49

CS526 Topic 12-13: Software

Vulnerabilities

50

When casting occurs in C?

• When assigning to a different data type

• For binary operators +, -, *, /, %, &, |, ^,

– if either operand is an unsigned long, both are cast to

an unsigned long

– in all other cases where both operands are 32-bits or

less, the arguments are both upcast to int, and the

result is an int

• For unary operators

– ~ changes type, e.g., ~((unsigned short)0) is int

– ++ and -- does not change type

CS526 Topic 12-13: Software

Vulnerabilities

51

Where Does Integer Overflow Matter?

• Allocating spaces using calculation.

• Calculating indexes into arrays

• Checking whether an overflow could occur

• Direct causes:

– Truncation; Integer casting

Integer Overflow Vulnerabilities

Example (from Phrack)

int main(int argc, char *argv[]) {

 unsigned short s; int i; char buf[80];

 if (argc < 3){ return -1; }

 i = atoi(argv[1]); s = i;

 if(s >= 80) { printf(“No you don't!\n"); return -1; }

 printf("s = %d\n", s);

 memcpy(buf, argv[2], i);

 buf[i] = '\0'; printf("%s\n", buf); return 0;

}

CS526 Topic 12-13: Software

Vulnerabilities

52

CS526 Topic 12-13: Software

Vulnerabilities

53

Integer Overflow Vulnerabilities

Example

• Example:

const long MAX_LEN = 20K;

Char buf[MAX_LEN];

short len = strlen(input);

if (len < MAX_LEN) strcpy(buf, input);

Can a buffer overflow attack occur?

If so, how long does input needs to be?

CS526 Topic 12-13: Software

Vulnerabilities

54

Another Example

int ConcatBuffers(char *buf1, char *buf2,

 size_t len1, size_t len2)

{

 char buf[0xFF];

 if ((len1 + len2) > 0xFF) return -1;

 memcpy(buf, buf1, len1);

 memcpy(buf+len1, buf2, len2);

 return 0;

}

CS526 Topic 12-13: Software

Vulnerabilities

55

Yet Another Example

// The function is supposed to return false when

// x+y overflows unsigned short.

// Does the function do it correctly?

bool IsValidAddition(unsigned short x,

 unsigned short y) {

 if (x+y < x)

 return false;

 return true;

}

CS526 56

Coming Attractions …

• Malwares

Topic 12-13: Software

Vulnerabilities

