Information Security CS 526

Topic 11: Key Distribution & Agreement, Secure Communication

Readings for This Lecture

- On Wikipedia
 - Needham-Schroeder protocol (only the symmetric key part)
 - Public Key Certificates
 - HTTP Secure

Outline and Objectives

- Key distribution among multiple parties
- Kerberos
- Distribution of public keys, with public key certificates
- Diffie-Hellman Protocol
- TLS/SSL/HTTPS

Key Agreement among Multiple Parties

- For a group of N parties, every pair needs to share a different key
 - What is the number of keys?
- Solutions
 - Symmetric Encryption Use a central authority, a.k.a. (TTP).
 - Asymmetric Encryption PKI.

Needham-Schroeder Shared-Key Protocol

- Parties: A, B, and trusted server T
- Setup: A and T share K_{AT}, B and T share K_{BT}
- Goal: Mutual entity authentication between A and B; key establishment
- Messages:

```
A \to T: A, B, N<sub>A</sub> (1)

A \leftarrow T: E[K<sub>AT</sub>] (N<sub>A</sub>, B, k, E[K<sub>BT</sub>](k,A)) (2)

A \to B: E[K<sub>BT</sub>] (k, A) (3)

A \leftarrow B: E[k] (N<sub>B</sub>) (4)

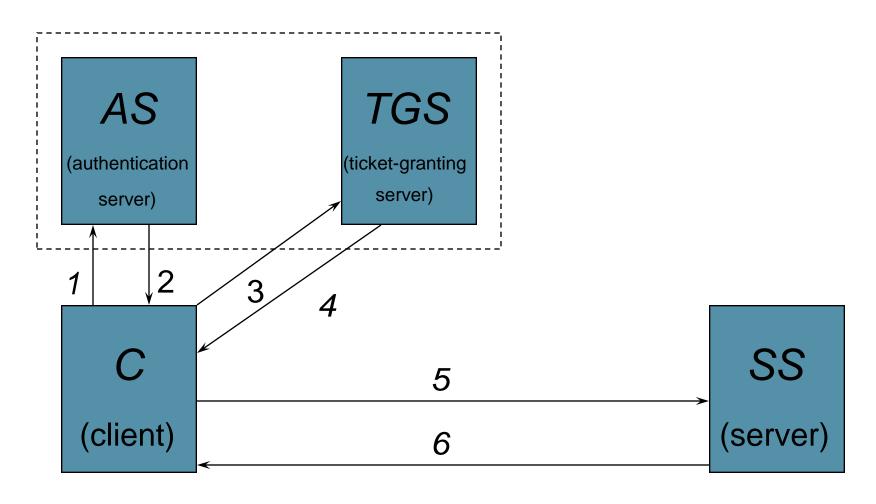
A \to B: E[k] (N<sub>B</sub>-1) (5)
```

What bad things can happen if there is no N_A ?

Another subtle flaw in Step 3.

Kerberos

- Implements the idea of Needham-Schroeder protocol
- Kerberos is a network authentication protocol
- Provides authentication and secure communication
- Relies entirely on symmetric cryptography
- Developed at MIT: <u>http://web.mit.edu/kerberos/www</u>
- Used in many systems, e.g., Windows 2000 and later as default authentication protocol



Kerberos Overview

- One issue of Needham-Schroeder Needs [K_{AT}] for every communication.
- Kerberos solution:
 - Separates TTP into an AS and a TGS.
- The client authenticates to AS using a long-term shared secret and receives a TGT [SSO].
- Use this TGT to get additional tickets from TGS without resorting to using the shared secret.

AS = Authentication Server TGS = Ticket Granting Server SS = Service Server TGT = Ticket Granting Ticket

Kerberos Protocol - 1

Topic 11: Key Distribution and Agreement

Kerberos Protocol – 2 (Simplified)

- 1. C \rightarrow AS: TGS || N_C
- 2. AS \rightarrow C: {K_{C,TGS} || C}_{K_{AS,TGS}} || {K_{C,TGS} || N_C || TGS}_{K_{AS,C}} (Note that the **first** part of message 2 is the **ticket granting ticket** (TGT) for the TGS)
- 3. C \rightarrow TGS: SS || N'_C || { $K_{C,TGS}$ || C} $_{K_{AS,TGS}}$ || {C|| T_1 } $_{K_{C,TGS}}$
- 4. TGS \rightarrow C: $\{K_{C,SS} || C\}_{K_{TGS,SS}} || \{K_{C,SS} || N'_C || SS\}_{K_{C,TGS}}$ (Note that the **first** part in message 4 is the **ticket** for the server S).
- 5. $C \rightarrow SS$: $\{K_{C,SS} \parallel C\}_{K_{TGS,SS}} \parallel \{C \parallel T_2\}_{K_{C,SS}}$
- 6. SS→C: {T₃}_{K_{C.SS}}

Kerberos Drawback

- Single point of failure:
- Security partially depends on tight clock synchronization.
- Useful primarily inside an organization
 - Does it scale to Internet? What is the main difficulty?

Public Keys and Trust

Public Key: P_R

•Secret key: S_R

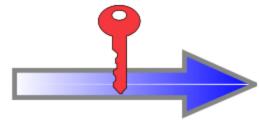
- •Public Key: P_△
- •Secret key: S_A
 - How are public keys stored?
 - How to obtain the public key?
 - How does Bob know or 'trusts' that P_∆ is Alice's public key?

Distribution of Public Keys

- Public announcement: users distribute public keys to recipients or broadcast to community at large.
- Publicly available directory: can obtain greater security by registering keys with a public directory.

 Both approaches have problems, and are vulnerable to forgeries

Public-Key Certificates


- A certificate binds identity (or other information) to public key
- Contents digitally signed by a trusted Public-Key or Certificate Authority (CA)
 - Can be verified by anyone who knows the public-key authority's public-key.
- For Alice to send an encrypted message to Bob, obtains a certificate of Bob's public key

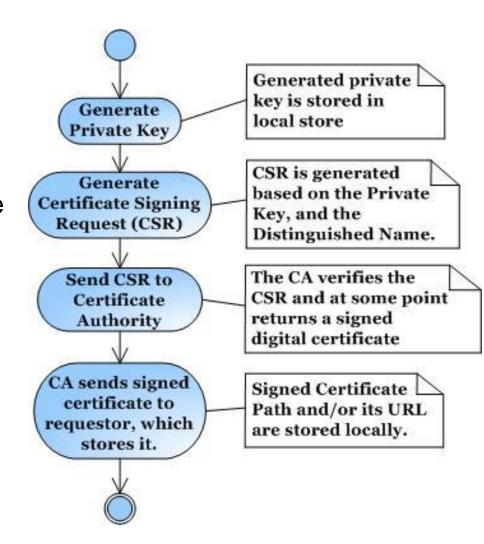
Public Key Certificates

Document containing the public key and identity for Mario Rossi

Certificate Authority's private key

Mario Rossi's Certificate

Document signed by the Certificate Authority

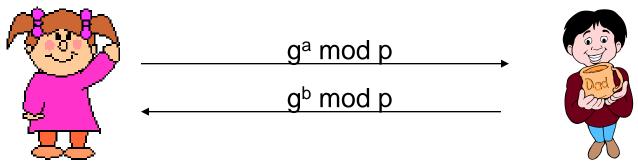

Topic 11: Key Distribution and Agreement

X.509 Certificates

- Part of X.500 directory service standards.
 - Started in 1988
- Defines framework for authentication services:
 - Defines that public keys stored as certificates in a public directory.
 - Certificates are issued and signed by an entity called certification authority (CA).
- Used by numerous applications: SSL, IPSec, SET
- Example: see certificates accepted by your browser

How to Obtain a Certificate?

- Define your own CA (use openssl or Java Keytool)
 - Certificates unlikely to be accepted by others
- Obtain certificates from one of the vendors: VeriSign, Thawte, and many others



CAs and Trust

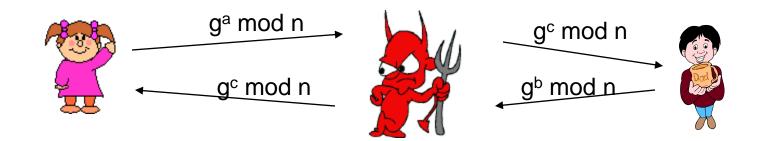
- Certificates are trusted if signature of CA verifies
- Chain of CA's can be formed, head CA is called root CA
- In order to verify the signature, the public key of the root CA should be obtain.
- TRUST is centralized (to root CA's) and hierarchical
- What bad things can happen if the root CA system is compromised?
- How does this compare with the TTP in Needham/Schroeder protocol?

Key Agreement: Diffie-Hellman Protocol

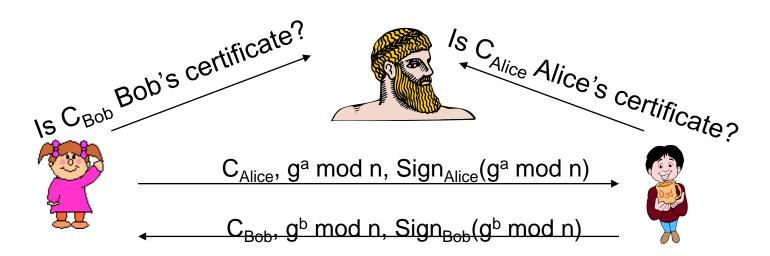
Key agreement protocol, both A and B contribute to the key Setup: p prime and g generator of Z_p^* , p and g public.

Pick random, secret (a)

Compute and send ga mod p


 $K = (g^b \mod p)^a = g^{ab} \mod p$

Pick random, secret (b)


Compute and send gb mod p

$$K = (g^a \mod p)^b = g^{ab} \mod p$$

Authenticated Diffie-Hellman

Alice computes gac mod n and Bob computes gbc mod n !!!

Secure communication 🗿 Wells Fargo Account Summary - Microsoft Internet Explorer _ & X File Edit View Favorites Iools Help ⇔ Back • ⇒ • ⊗ mathematics and back • ⇒ • ⊗ Address Address thttps://online.wellsfargo.com/mn1_aa1_on/cgi-bin/session.cgi?sessargs=coAn76axS2xltPX8uoCT8rRBfMMd3ldx ▼ 🖟Go | Links 🚳 Yahoo maps 🐔 Mapblast 🐔 Dictionary Home | Help Center | Contact Us | Locations | Site Map | Apply | Sign Off Last Log On: January 06, 2004 **Account Summary** Wells Fargo Accounts OneLook Accounts Tip: Select an account's balance to access the Account History. Enroll for Online Statements **Account Services** My Message Center My Message Center Cash Accounts Available Balance Stay organized with FREE 24/7 access to Online Statements. Checking Add Bill Pay To end your session, be sure to Sign Off. Sign up today. Account Summary | Brokerage | Bill Pay | Transfer | My Message Center | Sign Off Home | Help Center | Contact Us | Locations | Site Map | Apply Sign up for the Wells Fargo Rewards® @1995 - 2003 Wells Fargo. All rights reserved. program and get 2,500 points.

Transport Layer Security (TLS)

- Predecessors: Secure socket layer (SSL): Versions 1.0, 2.0, 3.0
- TLS 1.0 (SSL 3.1); Jan 1999
- TLS 1.1 (SSL 3.2); Apr 2006
- TLS 1.2 (SSL 3.3); Aug 2008
- Standard for Internet security
 - Originally designed by Netscape
 - Goal: "... provide privacy and reliability between two communicating applications"
- Two main parts
 - Handshake Protocol
 - Establish shared secret key using public-key cryptography
 - Signed certificates for authentication
 - Record Layer
 - Transmit data using negotiated key, encryption function

Usage of SSL/TLS

- Applied on top of transport layer (typically TCP)
- Used to secure HTTP (HTTPS), SMTP, etc.
- One or both ends can be authenticated using public key and certificates
 - Typically only the server is authenticated
- Client & server negotiate a cipher suite, which includes
 - A key exchange algorithm, e.g., RSA, Diffie-Hellman, SRP, etc.
 - An encryption algorithm, e.g., RC4, Triple DES, AES, etc.
 - A MAC algorithm, e.g., HMAC-MD5, HMC-SHA1, etc.

Viewing HTTPS web sites

- Browser needs to communicate to the user the fact that HTTPS is used
 - E.g., a golden lock indicator on the bottom or on the address bar
 - Check some common websites
 - When users correctly process this information, can defeat phishing attacks
 - Security problems exist
 - People don't know about the security indicator
 - People forgot to check the indicator
 - Browser vulnerabilities enable incorrect indicator to be shown
 - Use confusing URLs, e.g.,
 - https:// homebanking.purdueefcu.com@host.evil.com/
 - Stored certificate authority info may be changed

Coming Attractions ...

Software vulnerabilities

