Readings for This Lecture

- Required reading from wikipedia
 - Block Cipher
 - Ciphertext
 - Indistinguishability
 - Block cipher modes of operation
A symmetric-key encryption scheme is comprised of three algorithms

- **Gen** the key generation algorithm
 - The algorithm must be probabilistic/randomized
 - Output: a key \(k \)

- **Enc** the encryption algorithm
 - Input: key \(k \), plaintext \(m \)
 - Output: ciphertext \(c := Enc_k(m) \)

- **Dec** the decryption algorithm
 - Input: key \(k \), ciphertext \(c \)
 - Output: plaintext \(m := Dec_k(m) \)

Requirement: \(\forall k \forall m \ [Dec_k(Enc_k(m)) = m] \)
Randomized vs. Deterministic Encryption

• Encryption can be randomized,
 – i.e., same message, same key, run encryption algorithm twice, obtains two different ciphertexts
 – E.g, $\text{Enc}_k[m] = (r, \text{PRNG}[k||r] \oplus m)$, i.e., the ciphertext includes two parts, a randomly generated r, and a second part
 – Ciphertext space can be arbitrarily large

• Decryption is deterministic in the sense that
 – For the same ciphertext and same key, running decryption algorithm twice always result in the same plaintext

• Each key induces a one-to-many mapping from plaintext space to ciphertext space
 – Corollary: ciphertext space must be equal to or larger than plaintext space
Towards Computational Security

• Perfect secrecy is too difficult to achieve.
• The computational approach uses two relaxations:
 – Security is preserved only against *efficient* (computationally bounded) adversaries
 • Adversary can only run in feasible amount of time
 – Adversaries can potentially succeed with some *very small probability* (that we can ignore the case it actually happens)
• Two approaches to formalize computational security: concrete and asymptotic
The Concrete Approach

- Quantifies the security by explicitly bounding the maximum success probability of adversary running with certain time:
 - “A scheme is \((t, \varepsilon)\)-secure if every adversary running for time at most \(t\) succeeds in breaking the scheme with probability at most \(\varepsilon\)”

 - Example: a strong encryption scheme with \(n\)-bit keys may be expected to be \((t, t/2^n)\)-secure.
 - \(N=128, t=2^{60}\), then \(\varepsilon=2^{-68}\). (# of seconds since big bang is \(2^{58}\))

- Makes more sense with symmetric encryption schemes because they use fixed key lengths.
The Asymptotic Approach

- A cryptosystem has a security parameter
 - E.g., number of bits in the RSA algorithm (1024, 2048, …)

- Typically, the key length depends on the security parameter
 - The bigger the security parameter, the longer the key, the more time it takes to use the cryptosystem, and the more difficult it is to break the scheme

- The crypto system must be efficient, i.e., runs in time polynomial in the security parameter

- “A scheme is secure if every Probabilistic Polynomial Time (PPT) algorithm succeeds in breaking the scheme with only negligible probability”
 - “negligible” roughly means exponentially small as security parameter increases
Defining Security

• Desire “semantic security”, i.e., having access to the ciphertext does not help adversary to compute any function of the plaintext.
 – Difficult to use

• Equivalent notion: Adversary cannot distinguish between the ciphertexts of two plaintexts
Towards IND-CPA Security:

• Ciphertext Indistinguishability under a Chosen-Plaintext Attack: Define the following IND-CPA experiment:
 – Involving an Adversary and a Challenger
 – Instantiated with an Adversary algorithm \(A \), and an encryption scheme \(\Pi = (\text{Gen}, \text{Enc}, \text{Dec}) \)

Challenger

\[
\begin{align*}
 k & \leftarrow \text{Gen}() \\
 b & \leftarrow_R \{0, 1\}
\end{align*}
\]

Adversary

\[
\begin{align*}
 \text{Enc}_k[] & \\
 m_0, m_1 & \\
 C = \text{Enc}_k[m_b] & \\
 b' & \in \{0, 1\}
\end{align*}
\]

chooses \(m_0, m_1 \in \mathcal{M} \)

Adversary wins if \(b = b' \)
The IND-CPA Experiment Explained

- A key k is generated by $Gen(1^n)$
- Adversary is given oracle access to $Enc_k(\cdot)$, and outputs a pair of equal-length messages m_0 and m_1
 - Oracle access: one gets its question answered without knowing any additional information
- A random bit b is chosen, and adversary is given $Enc_k(m_b)$
 - Called the challenge ciphertext
- Adversary still has oracle access to $Enc_k(\cdot)$, and (after some time) outputs b'
- Adversary wins if $b=b'$
CPA-secure (aka IND-CPA security)

- A encryption scheme $\Pi = (\text{Gen}, \text{Enc}, \text{Dec})$ has indistinguishable encryption under a chosen-plaintext attack (i.e., is IND-CPA secure) iff. for all PPT adversary A, there exists a negligible function negl such that
 - $\text{Pr}[A \text{ wins in IND-CPA experiment}] \leq \frac{1}{2} + \text{negl}(n)$

- No deterministic encryption scheme is CPA-secure. Why?
Another (Equivalent) Explanation of IND-CPA Security

- Ciphertext indistinguishability under chosen plaintext attack (IND-CPA)
 - Challenger chooses a random key K
 - Adversary chooses a number of messages and obtains their ciphertexts under key K
 - Adversary chooses two equal-length messages m_0 and m_1, sends them to a Challenger
 - Challenger generates $C=E_K[m_b]$, where b is a uniformly randomly chosen bit, and sends C to the adversary
 - Adversary outputs b' and wins if $b=b'$
 - Adversary advantage is $|\Pr[\text{Adv wins}] - \frac{1}{2}|$
 - Adversary should not have a non-negligible advantage
 - E.g, Less than, e.g., $1/2^{80}$ when the adversary is limited to certain amount of computation;
 - decreases exponentially with the security parameter (typically length of the key)
Intuition of IND-CPA security

• Perfect secrecy means that any plaintext is encrypted to a given ciphertext with the same probability, i.e., given any pair of M_0 and M_1, the probabilities that they are encrypted into a ciphertext C are the same
 – Hence no adversary can tell whether C is ciphertext of M_0 or M_1.

• IND-CPA means
 – With bounded computational resources, the adversary cannot tell which of M_0 and M_1 is encrypted in C

• Stream ciphers can be used to achieve IND-CPA security when the underlying PRNG is cryptographically strong
 – (i.e., generating sequences that cannot be distinguished from random, even when related seeds are used)
Computational Security vs. Information Theoretic Security

- If only having computational security, then can be broken by a brute force attack, e.g., enumerating all possible keys
 - Weak algorithms can be broken with much less time
- How to prove computational security?
 - Assume that some problems are hard (requires a lot of computational resources to solve), then show that breaking security means solving the problem
- Computational security is foundation of modern cryptography.
Why Block Ciphers?

- One thread of defeating frequency analysis
 - Use different keys in different locations
 - Example: one-time pad, stream ciphers

- Another way to defeat frequency analysis
 - Make the unit of transformation larger, rather than encrypting letter by letter, encrypting block by block
 - Example: block cipher
Block Ciphers

- An n-bit plaintext is encrypted to an n-bit ciphertext
 - $\mathcal{P}: \{0,1\}^n$
 - $\mathcal{C}: \{0,1\}^n$
 - $\mathcal{K}: \{0,1\}^s$
 - $\mathcal{E}: \mathcal{K} \times \mathcal{P} \rightarrow \mathcal{C}$: E_k: a permutation on $\{0,1\}^n$
 - $\mathcal{D}: \mathcal{K} \times \mathcal{C} \rightarrow \mathcal{P}$: D_k is E^{-1}_k
 - Block size: n
 - Key size: s
Data Encryption Standard (DES)

- Designed by IBM, with modifications proposed by the National Security Agency
- US national standard from 1977 to 2001
- De facto standard
- Block size is 64 bits;
- Key size is 56 bits
- Has 16 rounds
- Designed mostly for hardware implementations
 - Software implementation is somewhat slow
- Considered insecure now
 - Vulnerable to brute-force attacks
Attacking Block Ciphers

• Types of attacks to consider
 – known plaintext: given several pairs of plaintexts and ciphertexts, recover the key (or decrypt another block encrypted under the same key)
 – how would chosen plaintext and chosen ciphertext be defined?

• Standard attacks
 – exhaustive key search
 – dictionary attack
 – differential cryptanalysis, linear cryptanalysis

• Side channel attacks.

DES’s main vulnerability is short key size.
Chosen-Plaintext Dictionary Attacks Against Block Ciphers

• Construct a table with the following entries
 – $(K, E^K[0])$ for all possible key K
 – Sort based on the second field (ciphertext)
 – How much time does this take?

• To attack a new key K (under chosen message attacks)
 – Choose 0, obtain the ciphertext C, looks up in the table, and finds the corresponding key
 – How much time does this step take?

• Trade off space for time
Advanced Encryption Standard

• In 1997, NIST made a formal call for algorithms stipulating that the AES would specify an unclassified, publicly disclosed encryption algorithm, available royalty-free, worldwide.

• Goal: replace DES for both government and private-sector encryption.

• The algorithm must implement symmetric key cryptography as a block cipher and (at a minimum) support block sizes of 128-bits and key sizes of 128-, 192-, and 256-bits.

• In 1998, NIST selected 15 AES candidate algorithms.

• On October 2, 2000, NIST selected Rijndael (invented by Joan Daemen and Vincent Rijmen) to as the AES.
AES Features

- Designed to be efficient in both hardware and software across a variety of platforms.
- Block size: 128 bits
- Variable key size: 128, 192, or 256 bits.
- No known weaknesses
Need for Encryption Modes

• A block cipher encrypts only one block
• Needs a way to extend it to encrypt an arbitrarily long message
• Want to ensure that if the block cipher is secure, then the encryption is secure
• Aims at providing Semantic Security (IND-CPA) assuming that the underlying block ciphers are strong
Block Cipher Encryption Modes: ECB

- Message is broken into independent blocks;

- **Electronic Code Book (ECB)**: each block encrypted separately.

 - Encryption: \(c_i = E_k(x_i) \)
 - Decryption: \(x_i = D_k(c_i) \)
Properties of ECB

• Deterministic:
 – the same data block gets encrypted the same way,
 • reveals patterns of data when a data block repeats
 – when the same key is used, the same message is encrypted the same way

• Usage: not recommended to encrypt more than one block of data

• How to break the semantic security (IND-CPA) of a block cipher with ECB?
DES Encryption Modes: CBC

- **Cipher Block Chaining (CBC):**
 - Uses a random Initial Vector (IV)
 - Next input depends upon previous output

Encryption: \(C_i = E_k (M_i \oplus C_{i-1}) \), with \(C_0 = IV \)

Decryption: \(M_i = C_{i-1} \oplus D_k (C_i) \), with \(C_0 = IV \)
Properties of CBC

- Randomized encryption: repeated text gets mapped to different encrypted data.
 - can be proven to provide IND-CPA assuming that the block cipher is secure (i.e., it is a Pseudo Random Permutation (PRP)) and that IV’s are randomly chosen and the IV space is large enough (at least 64 bits)
- Each ciphertext block depends on all preceding plaintext blocks.
- Usage: chooses random IV and protects the integrity of IV
 - The IV is not secret (it is part of ciphertext)
 - The adversary cannot control the IV
Encryption Modes: CTR

- **Counter Mode (CTR):** Defines a stream cipher using a block cipher
 - Uses a random IV, known as the counter
 - Encryption: $C_0 = IV$, $C_i = M_i \oplus E_k[IV+i]$
 - Decryption: $IV = C_0$, $M_i = C_i \oplus E_k[IV+i]$
Properties of CTR

- Gives a stream cipher from a block cipher

- Randomized encryption:
 - when starting counter is chosen randomly

- Random Access: encryption and decryption of a block can be done in random order, very useful for hard-disk encryption.
 - E.g., when one block changes, re-encryption only needs to encrypt that block. In CBC, all later blocks also need to change
Coming Attractions …

- Cryptography: Cryptographic Hash Functions and Message Authentication