Information Security
CS 526

Topic 21: Integrity Protection Models
Announcements

- Project 2 assigned on Nov 19, due on Dec 3
- An optional Homework 3 assigned
 - No need to submit written solution
 - Encouraged to work on the problems, especially if you plan to take qual
 - We will discuss the questions on the last lecture
- Quiz 3 will be returned on Nov 21
- Quiz 4 will be on Nov 26, covering topics 17 to 21
- Qual supplement planned on Dec 11
Related Readings for This Lecture

• Related Papers (Optional):
Motivations

• BLP focuses on confidentiality

• In most systems, integrity is equally, if not more, important

• Data integrity vs. System integrity
 – Data integrity means that data cannot be changed without being detected.
What is integrity in systems?

• Attempt 1: Critical data do not change.
• Attempt 2: Critical data changed only in “correct ways”
 – E.g., in DB, integrity constraints are used for consistency
• Attempt 3: Critical data changed only through certain “trusted programs”
• Attempt 4: Critical data changed only as intended by authorized users.
Biba: Integrity Levels

- Each subject (process) has an integrity level
- Each object has an integrity level
- Integrity levels are totally ordered

- Integrity levels different from security levels in confidentiality protection
 - Highly sensitive data may have low integrity
 - What is an example of a piece of data that needs high integrity, but no confidentiality?
Strict Integrity Policy (BLP reversed)

- **Rules:**
 - s can read o iff \(i(s) \leq i(o) \)
 - no read down
 - stops indirect sabotage by contaminated data
 - s can write to o iff \(i(s) \geq i(o) \)
 - no write up
 - stops directly malicious modification

- Fixed integrity levels
- No information path from low object/subject to high object/subject
Subject Low-Water Policy

- Rules
 - s can always read o; after reading
 \[i(s) \leftarrow \text{min}[i(s), i(o)] \]
 - s can write to o iff \[i(s) \geq i(o) \]

- Subject’s integrity level decreases as reading lower integrity data

- No information path from low-object to high-object
Object Low-Water Mark Policy

• Rules
 – s can read o; iff \(i(s) \leq i(o) \)
 – s can always write to o; after writing \(i(o) \leftarrow \min[i(s), i(o)] \)

• Object’s integrity level decreases as it is contaminated by subjects

• In the end, objects that have high labels have not been contaminated
Low-Water Mark Integrity Audit Policy

• Rules
 – s can always read o; after reading
 \[i(s) \leftarrow \min[i(s), i(o)] \]
 – s can always write to o; after writing
 \[i(o) \leftarrow \min[i(s), i(o)] \]

• Tracing, but not preventing contamination
• Similar to the notion of tainting in software security
The Ring Policy

- **Rules**
 - Any subject can read any object
 - s can write to o iff $i(s) \geq i(o)$

- **Integrity levels of subjects and objects are fixed.**

- **Intuitions:**
 - subjects are trusted to process low-level inputs correctly
Five Mandatory Policies in Biba

- Strict integrity policy
- Subject low-water mark policy
- Object low-water mark policy
- Low-water mark Integrity audit policy
- Ring policy

In practice, one may be using one or more of these policies, possibly applying different policies to different subjects
 - E.g., subjects for which ring policy is applied are trusted to be able to correctly handle inputs;
Object Integrity Levels

- The integrity level of an object may be based on
 - **Quality** of information (levels may change)
 - Degree of trustworthiness
 - Contamination level:
 - **Importance** of the object (levels do not change)
 - Degree of being trusted
 - Protection level: writing to the objects should be protected

- What should be the relationship between the two meanings, which one should be higher?
Trusted vs. Trustworthy

• A component of a system is trusted means that
 – the security of the system depends on it
 – failure of component can break the security policy
 – determined by its role in the system

• A component is trustworthy means that
 – the component deserves to be trusted
 – e.g., it is implemented correctly
 – determined by intrinsic properties of the component
Integrity vs. Confidentiality

<table>
<thead>
<tr>
<th>Confidentiality</th>
<th>Integrity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control reading preserved if confidential info is not read</td>
<td>Control writing preserved if important obj is not changed</td>
</tr>
<tr>
<td>For subjects who need to read, control writing after reading is sufficient, no need to trust them</td>
<td>For subjects who need to write, has to trust them, control reading before writing is not sufficient</td>
</tr>
</tbody>
</table>

Integrity requires trust in subjects!
Key Difference between Confidentiality and Integrity

• For confidentiality, controlling reading & writing is sufficient
 – theoretically, no subject needs to be trusted for confidentiality; however, one does need trusted subjects in BLP to make system realistic

• For integrity, controlling reading and writing is insufficient
 – one has to trust all subjects who can write to critical data
Impacts of The Need to Trust Subjects

• Trusting only a small security kernel is no longer possible

• No need to worry about covert channels for integrity protection

• How to establish trust in subjects becomes a challenge.
Application of Integrity Protection

• Mandatory Integrity Control in Windows (since Vista)
 – Uses four integrity levels: Low, Medium, High, and System
 – Each process is assigned a level, which limit resources it can access
 – Processes started by normal users have Medium
 – Elevated processes have High
 • Through the User Account Control feature
 – Some processes run as Low, such as IE in protected mode
 – Reading and writing do not change the integrity level
 • Ring policy.
The Clark-Wilson Model

- Military policies focus on preventing disclosure
- In commercial environment, integrity is paramount
 - no user of the system, even if authorized, may be permitted to modify data items in such a way that assets or accounting records of the company are lost or corrupted
Two High-level Mechanisms for Enforcing Data Integrity

- **Well-formed transaction**
 - A user should not manipulate data arbitrarily, but only in constrained ways that preserve or ensure data integrity
 - E.g., use a write-only log to record all transactions
 - E.g., double-entry bookkeeping
 - E.g., passwd

Can manipulate data only through trusted code!
Two High-level Mechanisms for Enforcing Data Integrity

- **Separation of duty**
 - ensure external consistency: data objects correspond to the real world objects
 - separating all operations into several subparts and requiring that each subpart be executed by a different person
 - e.g., the two-man rule
Implementing the Two High-level Mechanisms

• Mechanisms are needed to ensure
 – control access to data: a data item can be manipulated only by a specific set of programs
 – program certification: programs must be inspected for proper construction, controls must be provided on the ability to install and modify these programs
 – control access to programs: each user must be permitted to use only certain sets of programs
 – control administration: assignment of people to programs must be controlled and inspected
The Clarke-Wilson Model for Integrity

- **Unconstrained Data Items (UDIs)**
 - data with low integrity
- **Constrained Data Items (CDIs)**
 - data items within the system to which the integrity model must apply
- **Integrity Verification Procedures (IVPs)**
 - confirm that all of the CDIs in the system conform to the integrity specification
- **Transformation Procedures (TPs)**
 - well-formed transactions
Differences from MAC/BLP

- A data item is not associated with a particular security level, but rather with a set of TPs.
- A user is not given read/write access to data items, but rather permissions to execute certain programs.
Comparison with Biba

- Biba lacks the procedures and requirements on identifying subjects as trusted

- Clark-Wilson focuses on how to ensure that programs can be trusted
The Chinese Wall Security Policy

• Goal: Avoid Conflict of Interest
• Data are stored in a hierarchical arranged system
 – the lowest level consists of individual data items
 – the intermediate level group data items into company data sets
 – the highest level group company datasets whose corporation are in competition
THE SET OF ALL OBJECTS, O

Conflict of interest classes

Company datasets

| f | g | h | i | j | k | l | m | n |

| | | | individual objects (conflict of interest class A company dataset g)
Simple Security Rule in Chinese Wall Policy

- Access is only granted if the object requested:
 - is in the same company dataset as an object already accessed by that subject, i.e., within the Wall,
 or
 - belongs to an entirely different conflict of interest class.
Coming Attractions …

• Assurance