Information Security
CS 526

Topic 19: DNS Security
Domain Name System

• Translate host names to IP addresses
 – E.g., www.xyz.com ➔ 74.125.91.103
 – Why is needed?
 • E.g. akami.

• And back
 – From IP addresses to DNS name
DNS is a Distributed Database

- Information is stored in a distributed way
- Highly dynamic
- Decentralized authority
Domain Name System

- Hierarchical Name Space

```
root
|   |   |   |   |   |
org | net | edu | com | uk | ca |
wisc | illinois | purdue | indiana | umich |
    |       | cs | ece |
    |       | www |
```
Domain Name System

- Verisign, Dulles, VA
- Cogent, Herndon, VA (also Los Angeles)
- U Maryland College Park, MD
- US DoD Vienna, VA
- ARL Aberdeen, MD
- Verisign, (11 locations)
- NASA Mt View, CA
- Internet Software C, Palo Alto, CA (and 17 other locations)
- USC-ISI Marina del Rey, CA
- ICANN Los Angeles, CA
- RIPE London (also Amsterdam, Frankfurt)
- Autonomica, Stockholm (plus 3 other locations)
- WIDE Tokyo
Domain Name Servers

- **Top-level domain (TLD) servers:**
 - responsible for com, org, net, edu, etc, and all top-level country domains, e.g. uk, fr, ca, jp.
 - Network Solutions maintains servers for “.com”

- **Authoritative DNS servers:**
 - organization’s DNS servers, providing authoritative hostname to IP mappings for organization’s servers.
 - can be maintained by organization or service provider.
Domain Name Servers - 2

- Local Name Server
 - does not strictly belong to hierarchy
 - each ISP (residential ISP, company, university) has one.
DNS Resolving

• When host makes DNS query, query is sent to its local DNS server.
 – acts as proxy, forwards query into hierarchy.

• Two resolving schemes:
 – Iterative, and
 – Recursive.
Caching

• DNS responses are cached
 – Quick response for repeated translations

• Negative results are also cached
 – Save time for nonexistent sites, e.g. misspelling

• Cached data periodically times out
 – Each record has a TTL field
Caching - 2

Your Computer

- Mail Client
- Web Browser

Client Programs

Operating System

local cache

DNS Resolver

recursive DNS search

Your ISP

cache timeout: 1-30 min
Inherent DNS Vulnerabilities

- Users/hosts typically trust the host-address mapping provided by DNS
 - What bad things can happen with wrong DNS info?

- DNS resolvers trust responses received after sending out queries.
 - How to attack?

- Obvious problem
 - No authentication for DNS responses
User Side Attack - Pharming

- Exploit DNS poisoning attack
 - Change IP addresses to redirect URLs to fraudulent sites
 - Potentially more dangerous than phishing attacks
 - Why?

- DNS poisoning attacks have occurred:
 - January 2005, the domain name for a large New York ISP, Panix, was hijacked to a site in Australia.
 - In November 2004, Google and Amazon users were sent to Med Network Inc., an online pharmacy
DNS Cache Poisoning

- Attacker wants his IP address returned for a DNS query

- When the resolver asks ns1.google.com for www.google.com, the attacker could reply first, with his own IP

- What is supposed to prevent this?

- Transaction ID
 - 16-bit random number
 - The real server knows the number, because it was contained in the query
 - The attacker has to guess
DNS cache poisoning - 2

- Responding before the real nameserver
 - An attacker can guess when a DNS cache entry times out and a query has been sent, and provide a fake response.
 - The fake response will be accepted only when its 16-bit transaction ID matches the query
 - CERT reported in 1997 that BIND uses sequential transaction ID and is easily predicted
 - fixed by using random transaction IDs
DNS cache poisoning: Racing to Respond First

Stub Resolver

DNS Query;
ID=0xf526
A? www.google.com

Recursive DNS

A?

DNS Query;
ID=0xfe93
A? www.google.com

Attacker

Multiple crafted "IN A"

IN A

...
DNS cache poisoning (Schuba and Spafford in 1993)

- DNS resource records (see RFC 1034)
 - An “A” record supplies a host IP address
 - A “NS” record supplies name server for domain
- First, guess query ID:
 - Ask (dns.target.com) for www.evil.org
 - Request is sent to dns.evil.org (get quid).
- Second, attack:
 - Ask (dns.target.com) for www.yahoo.com
 - Give responses from “dns.yahoo.com” to our chosen IP.
Defense Using The Bailiwicks Rules

• The bailiwick system prevents foo.com from declaring anything about “com”, or some other new TLD, or www.google.com

• Using the bailiwicks rules
 – The root servers can return any record
 – The com servers can return any record for com
 – The google.com servers can return any record for google.com
DNS cache poisoning – Birthday attack

• Improve the chance of responding before the real nameserver (discovered by Vagner Sacramento in 2002)
 – Have many (say hundreds of) clients send the same DNS request to the name server
 • Each generates a query
 – Send hundreds of reply with random transaction IDs at the same time
 – Due to the Birthday Paradox, the success probability can be close to 1
 • 300 will give you 50%.
 • 700 will give you 1.07%
DNS poisoning – So far

- Early versions of DNS servers deterministically incremented the ID field.

- Vulnerabilities were discovered in the random ID generation:
 - Weak random number generator
 - The attacker is able to predict the ID if knowing several IDs in previous transactions.

- Birthday attack:
 - 16-bit (only 65,536 options).
 - Force the resolver to send many identical queries, with different IDs, at the same time.
 - Increase the probability of making a correct guess.
DNS cache poisoning - Kaminsky

- Kaminsky Attack
 - Big security news in summer of 2008
 - DNS servers worldwide were quickly patched to defend against the attack

- In previous attacks, when the attacker loses the race, the record is cached, with a TTL.
 - Before TTL expires, no attack can be carried out
 - Poisoning address for google.com in a DNS server is not easy.
What is New in the Kaminsky Attack?

• The bad guy does not need to wait to try again

• The bad guy asks the resolver to look up www.google.com
 – If the bad guy lost the race, the other race for www.google.com will be suppressed by the TTL

• If the bad guy asks the resolver to look up 1.google.com, 2.google.com, 3.google.com, and so on
 – Each new query starts a new race

• Eventually, the bad guy will win
 – he is able to spoof 183.google.com
 – So what? No one wants to visit 183.google.com
Kaminsky-Style Poisoning

- A bad guy who wins the race for “183.google.com” can end up stealing “www.google.com” as well

- Original malicious response:
 - google.com NS www.google.com
 - www.google.com A 6.6.6.6

- Killer response:
 - google.com NS ns.badguy.com
Kaminsky-Style Poisoning (cont’)

- **Why it succeeded:**
 - Can start anytime; no waiting for old good cached entries to expire
 - No “wait penalty” for racing failure
 - The attack is only bandwidth limited

- **Defense (alleviate, but not solve the problem)**
 - Also randomize the UDP used to send the DNS query, the attacker has to guess that port correctly as well (increase the space of possible IDs).
DNS Poisoning Defenses

• Difficulty to change the protocol
 – Protocol stability (embedded devices)
 – Backward compatibility.

• Long-term
 – Cryptographic protections
 • E.g., DNSSEC, DNSCurve
 – Require changes to both recursive and authority servers
 – A multi-year process

• Short-term
 – Only change the recursive server (local DNS).
 – Easy to adopt
Short-Term Defenses

• Source port randomization
 – Add up to 16 bits of entropy
 – NAT could de-randomize the port

• DNS 0x20 encoding
 – From Georgia tech, CCS 2008

• Tighter logic for accepting responses
DNS-0x20 Bit Encoding

- DNS labels are case insensitive
- Matching and resolution is entirely case insensitive
- A resolver can query in any case pattern
 - E.g., WwW.ExAmpLe.cOM
 - It will get the answer for www.example.com
DNS-0x20 DNS Encoding (cont’)

• A DNS response contains the query being asked

• When generating the response, the query is copied from the request exactly into the response
 – The case pattern of the query is preserved in the response

• Open source implementations exhibit this behavior
 – The DNS request is rewritten in place

• The mixed pattern of upper and lower case letters constitutes a channel, which can be used to improve DNS security
 – Only the real server knows the correct pattern
Query Encoding

- Transforms the query into all lowercase
- Encrypt the query with a key shared by all queries on the recursive server (A)
- The cipher text is used to encode the query
 - 0: \(\text{buff}[i] \mid= 0x20 \) (upper)
 - 1: \(\text{buff}[i] \&= 0x20 \) (lower)
DNS-0x20 Encoding Analysis

• Do existing authority servers preserve the case pattern?
 – Scan 75 million name servers, 7 million domains

• Only 0.3% mismatch observed

<table>
<thead>
<tr>
<th>Type</th>
<th>Mismatch</th>
<th>Mismatch pct.</th>
<th>Domain scanned</th>
</tr>
</thead>
<tbody>
<tr>
<td>.com TLD</td>
<td>15451</td>
<td>0.327%</td>
<td>4786993</td>
</tr>
<tr>
<td>.net TLD</td>
<td>4437</td>
<td>0.204%</td>
<td>2168352</td>
</tr>
</tbody>
</table>
DNS-0x20 Encoding Analysis (cont’)

- Not every character is 0x20 capable
- Improve the forgery resistance of DNS messages only in proportion to the number of upper or lower case characters
 - cia.gov 6-bit entropy
 - licensing.disney.com 18-bit entropy
 - 163.com 3-bit entropy
- TLDs are also vulnerable to Kaminsky-style attacks; but they have few 0x20-capable bits
Other DNS attacks

- Attacking home routers/gateways

- Incidence in Mexico in 2008
 - an email sent to users
 - email include URL (HTTP requests) to the HTTP-based interface of wireless routers
 - using the default password to reconfigure the router/gateway
Long Term Solution

• DNSSEC:
 – Authenticate responses.
 – Google DNS now is enabled by default.

• Challenges in deployment:
 – Response is large, might no linger fit in single UDP message.
 – Legacy software and machines.
Readings for This Lecture

• Optional:
 • First attack by Schuba and Spafford - http://www.openbsd.org/advisories/sni_12_resolverid.txt

 • An Illustrated Guide to the Kaminsky DNS Vulnerability

 • Dan Kaminsky's Black Hat presentation (PowerPoint)
Coming Attractions …

- Non-interference and non-deducability