Information Security CS 526

Topic 19: DNS Security

Domain Name System

- Translate host names to IP addresses
 - E.g., www.xyz.com → 74.125.91.103
 - Why is needed?
 - E.g. akami.
- And back
 - From IP addresses to DNS name

DNS is a Distributed Database

- Information is stored in a distributed way
- Highly dynamic
- Decentralized authority

Domain Name System

Hierarchical Name Space

Domain Name System

Domain Name Servers

- Top-level domain (TLD) servers:
 - responsible for com, org, net, edu, etc, and all toplevel country domains, e.g. uk, fr, ca, jp.
 - Network Solutions maintains servers for ".com"
- Authoritative DNS servers:
 - organization's DNS servers, providing authoritative hostname to IP mappings for organization's servers.
 - can be maintained by organization or service provider.

Domain Name Servers - 2

- Local Name Server
 - does not strictly belong to hierarchy
 - each ISP (residential ISP, company, university) has one.

DNS Resolving

- When host makes DNS query, query is sent to its local DNS server.
 - acts as proxy, forwards query into hierarchy.
- Two resolving schemes:
 - Iterative, and
 - Recursive.

DNS Resolving - 2

Caching

- DNS responses are cached
 - Quick response for repeated translations
- Negative results are also cached
 - Save time for nonexistent sites, e.g. misspelling
- Cached data periodically times out
 - Each record has a TTL field

Inherent DNS Vulnerabilities

 Users/hosts typically trust the host-address mapping provided by DNS

- What bad things can happen with wrong DNS info?

 DNS resolvers trust responses received after sending out queries.

- How to attack?

- Obvious problem
 - No authentication for DNS responses

User Side Attack - Pharming

- Exploit DNS poisoning attack
 - Change IP addresses to redirect URLs to fraudulent sites
 - Potentially more dangerous than phishing attacks
 - Why?
- DNS poisoning attacks have occurred:
 - January 2005, the domain name for a large New York ISP, Panix, was hijacked to a site in Australia.
 - In November 2004, Google and Amazon users were sent to Med Network Inc., an online pharmacy

DNS Cache Poisoning

- Attacker wants his IP address returned for a DNS query
- When the resolver asks ns1.google.com for www.google.com, the attacker could reply first, with his own IP
- What is supposed to prevent this?
- Transaction ID
 - 16-bit random number
 - The real server knows the number, because it was contained in the query
 - The attacker has to guess

DNS cache poisoning - 2

- Responding before the real nameserver
 - An attacker can guess when a DNS cache entry times out and a query has been sent, and provide a fake response.
 - The fake response will be accepted only when its 16bit transaction ID matches the query
 - CERT reported in 1997 that BIND uses sequential transaction ID and is easily predicted
 - fixed by using random transaction IDs

DNS cache poisoning: Racing to Respond First

Topic 19: DNS Security

DNS cache poisoning (Schuba and Spafford in 1993)

- DNS resource records (see RFC 1034)
 - An "A" record supplies a host IP address
 - A "NS" record supplies name server for domain
- First, guess query ID:
 - Ask (dns.target.com) for www.evil.org
 - Request is sent to dns.evil.org (get quid).
- Second, attack:
 - Ask (dns.target.com) for www.yahoo.com
 - Give responses from "dns.yahoo.com" to our chosen IP.

Defense Using The Bailiwicks Rules

- The bailiwick system prevents foo.com from declaring anything about "com", or some other new TLD, or <u>www.google.com</u>
- Using the bailiwicks rules
 - The root servers can return any record
 - The com servers can return any record for com
 - The google.com servers can return any record for google.com

DNS cache poisoning – Birthday attack

- Improve the chance of responding before the real nameserver (discovered by Vagner Sacramento in 2002)
 - Have many (say hundreds of) clients send the same DNS request to the name server
 - Each generates a query
 - Send hundreds of reply with random transaction IDs at the same time
 - Due to the Birthday Paradox, the success probability can be close to 1
 - 300 will give you 50%.
 - 700 will give you 1.07%

DNS poisoning – So far

- Early versions of DNS servers deterministically incremented the ID field
- Vulnerabilities were discovered in the random ID generation
 - Weak random number generator
 - The attacker is able to predict the ID if knowing several IDs in previous transactions
- Birthday attack
 - 16- bit (only 65,536 options).
 - Force the resolver to send many identical queries, with different IDs, at the same time
 - Increase the probability of making a correct guess

DNS cache poisoning - Kaminsky

- Kaminsky Attack
 - Big security news in summer of 2008
 - DNS servers worldwide were quickly patched to defend against the attack
- In previous attacks, when the attacker loses the race, the record is cached, with a TTL.
 - Before TTL expires, no attack can be carried out
 - Posining address for google.com in a DNS server is not easy.

What is New in the Kaminsky Attack?

- The bad guy does not need to wait to try again
- The bad guy asks the resolver to look up www.google.com
 - If the bad guy lost the race, the other race for www.google.com will be suppressed by the TTL
- If the bad guy asks the resolver to look up 1.google.com, 2.google.com, 3.google.com, and so on – Each new query starts a new race
- Eventually, the bad guy will win
 - he is able to spoof 183.google.com
 - So what? No one wants to visit 183.google.com

Kaminsky-Style Poisoning

- A bad guy who wins the race for "183.google.com" can end up stealing "www.google.com" as well
- Original malicious response:
 - google.com NS www.google.com
 - www.google.com A 6.6.6.6
- Killer response:
 - google.com NS ns.badguy.com

Kaminsky-Style Poisoning (cont')

- Why it succeeded:
 - Can start anytime; no waiting for old good cached entries to expire
 - No "wait penalty" for racing failure
 - The attack is only bandwidth limited
- Defense (alleviate, but not solve the problem)
 - Also randomize the UDP used to send the DNS query, the attacker has to guess that port correctly as well (increase the space of possible IDs).

DNS Poisoning Defenses

- Difficulty to change the protocol
 - Protocol stability (embedded devices)
 - Backward compatibility.
- Long-term
 - Cryptographic protections
 - E.g., DNSSEC, DNSCurve
 - Require changes to both recursive and authority servers
 - A multi-year process
- Short-term
 - Only change the recursive server (local DNS).
 - Easy to adopt

Short-Term Defenses

- Source port randomization
 - Add up to 16 bits of entropy
 - NAT could de-randomize the port
- DNS 0x20 encoding
 - From Georgia tech, CCS 2008
- Tighter logic for accepting responses

DNS-0x20 Bit Encoding

- DNS labels are case insensitive
- Matching and resolution is entirely case insensitive
- A resolver can query in any case pattern
 - E.g., WwW.ExAmpLe.cOM
 - It will get the answer for www.example.com

DNS-0x20 DNS Encoding (cont')

- A DNS response contains the query being asked
- When generating the response, the query is copied from the request exactly into the response
 The case pattern of the query is preserved in the response
- Open source implementations exhibit this behavior
 The DNS request is rewritten in place
- The mixed pattern of upper and lower case letters constitutes a channel, which can be used to improve DNS security
 - Only the real server knows the correct pattern

Query Encoding

- Transforms the query into all lowercase
- Encrypt the query with a key shared by all queries on the recursive server (A)
- The cipher text is used to encode the query
 - 0: buff[i] |= 0x20 (upper)
 - 1: buff[i] &= 0x20 (lower)

DNS-0x20 Encoding Analysis

- Do existing authority servers preserve the case pattern?
 - Scan 75 million name servers, 7 million domains
- Only 0.3% mismatch observed

Туре	Mismatch	Mismatch pet.	Domain scanned
.com TLD	15451	0.327%	4786993
.net TLD	4437	0.204%	2168352

DNS-0x20 Encoding Analysis (cont')

- Not every character is 0x20 capable
- Improve the forgery resistance of DNS messages only in proportion to the number of upper or lower case characters
 - cia.gov 6-bit entropy
 - licensing.disney.com
 18-bit entropy
 - 163.com
 3-bit entropy
- TLDs are also vulnerable to Kaminsky-style attacks; but they have few 0x20-capable bits

Other DNS attacks

- Attacking home routers/gateways
- Incidence in Mexica in 2008
 - an email sent to users
 - email include URL (HTTP requests) to the HTTPbased interface of wireless routers
 - using the default password to reconfigure the router/gateway

Long Term Solution

• DNSSEC:

- Authenticate responses.
- Google DNS now is enabled by default.
- Challenges in deployment:
 - Response is large, might no linger fit in single UDP message.
 - Legacy software and machines.

Readings for This Lecture

- Optional:
 - First attack by Schuba and Spafford -

http://www.openbsd.org/advisor ies/sni_12_resolverid.txt

- <u>An Illustrated Guide to the</u> Kaminsky DNS Vulnerability
- Dan Kaminsky's <u>Black Hat</u> presentation (PowerPoint)

Coming Attractions ...

 Non-interference and nondeducability

