Information Security

CS 526

Network Security (1)
Network Protocols Stack

- Application
- Transport
- Network
- Link

Application protocol
TCP protocol
IP protocol
Network Access
Data Link
Types of Addresses in Internet

- Media Access Control (MAC) addresses in the network access layer
 - Associated w/ network interface card (NIC)
 - 48 bits or 64 bits
- IP addresses for the network layer
 - 32 bits for IPv4, and 128 bits for IPv6
 - E.g., 128.3.23.3
- IP addresses + ports for the transport layer
 - E.g., 128.3.23.3:80
- Domain names for the application/human layer
 - E.g., www.purdue.edu
Routing and Translation of Addresses

- Translation between IP addresses and MAC addresses
 - Address Resolution Protocol (ARP) for IPv4
 - Neighbor Discovery Protocol (NDP) for IPv6
- Routing with IP addresses
 - TCP, UDP, IP for routing packets, connections
 - Border Gateway Protocol for routing table updates
- Translation between IP addresses and domain names
 - Domain Name System (DNS)
Threats in Networking

- **Confidentiality**
 - e.g. Packet sniffing

- **Integrity**
 - e.g. Session hijacking

- **Availability**
 - e.g. Denial of service attacks

- **Common**
 - e.g. Address translation poisoning attacks
 - e.g. Routing attacks
Concrete Security Problems

- ARP is not authenticated
 - APR spoofing (or ARP poisoning)
- Network packets pass by untrusted hosts
 - Packet sniffing
- TCP state can be easy to guess
 - TCP spoofing attack
- Open access
 - Vulnerable to DoS attacks
- DNS is not authenticated
 - DNS poisoning attacks
Address Resolution Protocol (ARP)

- Primarily used to translate IP addresses to Ethernet MAC addresses
 - The device drive for Ethernet NIC needs to do this to send a packet
- Also used for IP over other LAN technologies, e.g. IEEE 802.11
- Each host maintains a table of IP to MAC addresses
- Message types:
 - ARP request
 - ARP reply
 - ARP announcement
http://www.windowsecurity.com
ARP Spoofing (ARP Poisoning)

- Send fake or 'spoofed', ARP messages to an Ethernet LAN.
 - To have other machines associate IP addresses with the attacker’s MAC
- Legitimate use
 - redirect a user to a registration page before allow usage of the network.
 - Implementing redundancy and fault tolerance
ARP Spoofing (ARP Poisoning) - 2

• Defenses
 – static ARP table
 – DHCP Certification (use access control to ensure that hosts only use the IP addresses assigned to them, and that only authorized DHCP servers are accessible).
 – detection: Arpwatch (sending email when updates occur),
IP Routing

- Internet routing uses numeric IP address
- Typical route uses several hops
Packet Sniffing

- Promiscuous Network Interface Card reads all packets
 - Read all unencrypted data (e.g., “ngrep”)
 - ftp, telnet send passwords in clear!

Prevention: Encryption (IPSEC, TLS)
User Datagram Protocol

- IP provides routing
 - IP address gets datagram to a specific machine
- UDP separates traffic by port (16-bit number)
 - Destination port number gets UDP datagram to particular application process, e.g., 128.3.23.3:53
 - Source port number provides return address
- Minimal guarantees
 - No acknowledgment
 - No flow control
 - No message continuation
Transmission Control Protocol

- Connection-oriented, preserves order
 - Sender
 - Break data into packets
 - Attach sequence numbers
 - Receiver
 - Acknowledge receipt; lost packets are resent
 - Reassemble packets in correct order
TCP Sequence Numbers

- **Sequence number (32 bits) –** has a dual role:
 - If the SYN flag is set, then this is the initial sequence number. The sequence number of the actual first data byte is this sequence number plus 1.
 - If the SYN flag is clear, then this is the accumulated sequence number of the first data byte of this packet for the current session.

- **Acknowledgment number (32 bits) –**
 - If the ACK flag is set then this the next sequence number that the receiver is expecting.
 - This acknowledges receipt of all prior bytes (if any).
TCP Handshake

C

SYN (seq=x)

S

Listening

Store data

Wait

Connected

SYN ACK (ack=x+1 seq=y)

ACK (ack=y+1,seq=x+1)
TCP sequence prediction attack

- Predict the sequence number used to identify the packets in a TCP connection, and then counterfeit packets.
- Adversary: do not have full control over the network, but can inject packets with fake source IP addresses
 - E.g., control a computer on the local network
- TCP sequence numbers are used for authenticating packets
- Initial seq# needs high degree of unpredictability
 - If attacker knows initial seq # and amount of traffic sent, can estimate likely current values
 - Some implementations are vulnerable
Blind TCP Session Hijacking

- A, B trusted connection
 - Send packets with predictable seq numbers
- E impersonates B to A
 - Opens connection to A to get initial seq number
 - DoS B’s queue
 - Sends packets to A that resemble B’s transmission
 - E cannot receive, but may execute commands on A

Attack can be blocked if E is outside firewall.
Risks from Session Hijacking

- Inject data into an unencrypted server-to-server traffic, such as an e-mail exchange, DNS zone transfers, etc.
- Inject data into an unencrypted client-to-server traffic, such as ftp file downloads, http responses.
- Spoof IP addresses, which are often used for preliminary checks on firewalls or at the service level.
- Carry out MITM attacks on weak cryptographic protocols.
 - often result in warnings to users that get ignored
- Denial of service attacks, such as resetting the connection.
DoS vulnerability caused by session hijacking

- Suppose attacker can guess seq. number for an existing connection:
 - Attacker can send Reset packet to close connection. Results in DoS.
 - Naively, success prob. is $1/2^{32}$ (32-bit seq. #’s).
 - Most systems allow for a large window of acceptable seq. #’s
 - Much higher success probability.
- Attack is most effective against long lived connections, e.g. BGP.
Categories of Denial-of-service Attacks

<table>
<thead>
<tr>
<th>Locally</th>
<th>Stopping services</th>
<th>Exhausting resources</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Process killing</td>
<td>• Spawning processes to fill the process table</td>
</tr>
<tr>
<td></td>
<td>• Process crashing</td>
<td>• Filling up the whole file system</td>
</tr>
<tr>
<td></td>
<td>• System reconfiguration</td>
<td>• Saturate comm bandwidth</td>
</tr>
<tr>
<td>Remotely</td>
<td>• Malformed packets to crash buggy services</td>
<td>• Packet floods (Smurf, SYN flood, DDoS, etc)</td>
</tr>
</tbody>
</table>

- Process killing
- Process crashing
- System reconfiguration
- Spawning processes to fill the process table
- Filling up the whole file system
- Saturate comm bandwidth
- Malformed packets to crash buggy services
- Packet floods (Smurf, SYN flood, DDoS, etc)
SYN Flooding

C

SYN\textsubscript{C1}

SYN\textsubscript{C2}

SYN\textsubscript{C3}

SYN\textsubscript{C4}

SYN\textsubscript{C5}

S

Listening

Store data
SYN Flooding

• Attacker sends many connection requests
 – Spoofed source addresses
• Victim allocates resources for each request
 – Connection requests exist until timeout
 – Old implementations have a small and fixed bound on half-open connections
• Resources exhausted \(\Rightarrow \) requests rejected

• No more effective than other channel capacity-based attack today
Smurf DoS Attack

- Send ping request to broadcast addr (ICMP Echo Req)
- Lots of responses:
 - Every host on target network generates a ping reply (ICMP Echo Reply) to victim
 - Ping reply stream can overload victim

Prevention: reject external packets to broadcast address
Internet Control Message Protocol

- Provides feedback about network operation
 - Error reporting
 - Reachability testing
 - Congestion Control

- Example message types
 - Destination unreachable
 - Time-to-live exceeded
 - Parameter problem
 - Redirect to better gateway
 - Echo/echo reply - reachability test
Distributed DoS (DDoS)
Hiding DDoS Attacks

• Reflection
 – Find big sites with lots of resources, send packets with spoofed source address, response to victim
 • PING => PING response
 • SYN => SYN-ACK

• Pulsing zombie floods
 – each zombie active briefly, then goes dormant;
 – zombies taking turns attacking
 – making tracing difficult
Cryptographic network protection

- **Solutions above the transport layer**
 - Examples: SSL and SSH
 - Protect against session hijacking and injected data
 - Do not protect against denial-of-service attacks caused by spoofed packets

- **Solutions at network layer**
 - Use cryptographically random ISNs [RFC 1948]
 - More generally: IPsec
 - Can protect against
 - session hijacking and injection of data.
 - denial-of-service attacks using session resets.
Readings for This Lecture

• Optional Reading
 • Steve Bellovin: A Look Back at "Security Problems in the TCP/IP Protocol Suite"
Coming Attractions …

- DNS Security