

CS 426 Lab1

Tyler Wykoff

Task

 Understand buffer overflow

 Exploit some bugs

 Environment
 Linux
 Targets: C language
 Exploits: in C or script

Outline

 Function call
 Examples
 Targets
 Useful tools
 Environment setup

Memory Layout Overview

Stack

Unused memory

Heap

Data

Text

%esp

%eip

High Address

Low Address

Function Call(1) example1.c

Function Call(2) function frame

Return Addr

%ebp

argc

argv

Return Addr

%ebp

a

b

x

y

Frame for foo

Frame for main

%ebp

Function Call(3) what happens?

 Caller
 Push parameter(s) on stack
 Push return addr
 Jump to start addr of calee

 Callee
 Push %ebp, %ebp %esp
 Allocate space for local variables
 …
 %esp %ebp, Pop %ebp

 Return
 Pop return addr, jump to the addr
 Restore %esp

Function Call(4) assembly

Buffer Overflow example1b.c

 C doesn’t check boundaries!

Example 2 example2.c

Example 3 example3.c

Example 3 goal

 Load some code to the buffer
 Modify the return addr to execute

our code

Return Addr

%ebp

argc

argv

Return Addr

%ebp

arg

buf
…

Frame for foo

Frame for main

Example3 preparation

 Need to know
 Address of the buf
 Address of the return addr
 Distance between buf and return addr
 Length of the buffer

 Insert code in the buffer
 The code to launch a shell
 Reading: Smashing The Stack For Fun And

Profit by Aleph One
 Provided in exploits/shellcode.h

Example3 exploitation

 Insert shellcode at the beginning of
the buffer

 Put the addr of buf somewhere in
the buffer

 Excecute the target program

Return to lib-c attack

 Defense against buffer overflow
 Stack data are not executable
 Attack cannot provide code in the stack

 Attacker can still modify the return
address
 Return to some system library
 For example, system(const char *

string)

Target1

 A program to check the correctness
of the password

 Goal: Make the program accept
your ‘password’

 Exploit1.sh: a shell script

 Credit: 20%

Target2

 A program to print a coupon

 Goal: to print a lot coupons!

 Exploit2.c: c program

 Credit: 10% will be given if you can print
two coupons(only launching the target
program once) 20% will be given if you
can print more than twenty coupons

Target3

 A program to check if a password is
strong or weak

 Goal: to start a shell, by using a
buffer overflow and shellcode

 Exploit3.c: c program

 Credit: 30%

Target4

 A program to check if a password is
strong or weak

 Goal: to start a shell, using a return-
to-libc attack

 Exploit4.c: c program

 Credit: 30%

Useful tools

 GDB
 Start: gdb ./example1
 Source: list linenum
 Assembly: disassemble func
 Step: step/stepi
 Memory: x addr
 Variables/registers: print var/reg

 Will give GDB tutorial in PSO this
week!

Warming up

 Understand what is going on
 The assembly code
 The memory(stack)
 The registers
 The variables
 What does LEAVE/RET do
 …

Environment Setup

 The OS is running in a virtual machine
 Login

 Connect to the VM
 ssh cs426vm1.cs.purdue.edu

 Tools available
 gcc, make, gdb, vim, emacs

Submission

 Deadline is 11:59pm Oct 8th (two weeks
from Friday)

 Just leave your solution files (including
answers to questions) in ./exploits of your
home directory

 .c files should be compiled and ready to
run without any arguments

Team Details

 Email me (twykoff@purdue.edu):
 Who you are working with (both of

your names)
 What your requested login name is

 If you don't yet have a partner
 Email me and I'll pair you up

Other stuff (1)

 Exploits codes are short
 Several ways to exploit
 Start early
 Codes from others may *not* work
 Backup files often (outside the virtual

machine)
 Make your exploits stable

Other stuff (2)

 Don’t use the machines for other
purposes

 Updates may be available through
mailing list

 Have fun

Questions?

	CS 526 Lab1
	Task
	Outline
	Memory Layout Overview
	Function Call(1) example1.c
	Function Call(2) function frame
	Function Call(3) what happens?
	Function Call(4) assembly
	Buffer Overflow example1b.c
	Example 2 example2.c
	Example 3 example3.c
	Example 3 goal
	Example3 preparation
	Example3 exploitation
	Return to lib-c attack
	Target1
	Target3
	Slide 18
	Target4
	Useful tools
	Warming up
	Environment Setup
	Submission
	Slide 24
	Other stuff (1)
	Other stuff (2)
	Slide 27

