
  

CS 426 Lab1

Tyler Wykoff



  

Task

 Understand buffer overflow

 Exploit some bugs

 Environment
 Linux
 Targets: C language
 Exploits: in C or script



  

Outline

 Function call
 Examples
 Targets
 Useful tools
 Environment setup



  

Memory Layout Overview

Stack

Unused memory

Heap

Data

Text

%esp

%eip

High Address

Low Address



  

Function Call(1)         example1.c



  

Function Call(2)       function frame

Return Addr

%ebp

argc

argv

Return Addr

%ebp

a

b

x

y

Frame for foo

Frame for main

%ebp



  

Function Call(3)     what happens?

 Caller
 Push parameter(s) on stack
 Push return addr
 Jump to start addr of calee

 Callee
 Push %ebp, %ebp  %esp
 Allocate space for local variables
 …
 %esp  %ebp, Pop %ebp

 Return
 Pop return addr, jump to the addr
 Restore %esp



  

Function Call(4)            assembly



  

Buffer Overflow          example1b.c

 C doesn’t check boundaries!



  

Example 2                  example2.c



  

Example 3                   example3.c



  

Example 3                           goal

 Load some code to the buffer
 Modify the return addr to execute 

our code

Return Addr

%ebp

argc

argv

Return Addr

%ebp

arg

buf
…

Frame for foo

Frame for main



  

Example3                     preparation

 Need to know
 Address of the buf
 Address of the return addr
 Distance between buf and return addr
 Length of the buffer

 Insert code in the buffer
 The code to launch a shell
 Reading: Smashing The Stack For Fun And 

Profit by Aleph One
 Provided in exploits/shellcode.h



  

Example3                    exploitation

 Insert shellcode at the beginning of 
the buffer

 Put the addr of buf somewhere in 
the buffer

 Excecute the target program



  

Return to lib-c attack

 Defense against buffer overflow
 Stack data are not executable
 Attack cannot provide code in the stack

 Attacker can still modify the return 
address
 Return to some system library
 For example, system(const char * 

string)



  

Target1

 A program to check the correctness 
of the password

 Goal: Make the program accept 
your ‘password’

 Exploit1.sh: a shell script

 Credit: 20%



  

Target2

 A program to print a coupon

 Goal: to print a lot coupons!

 Exploit2.c: c program

 Credit: 10% will be given if you can print 
two coupons(only launching the target 
program once)  20% will be given if you 
can print more than twenty coupons



  

Target3

 A program to check if a password is 
strong or weak

 Goal: to start a shell, by using a 
buffer overflow and shellcode

 Exploit3.c: c program

 Credit: 30%



  

Target4

 A program to check if a password is 
strong or weak

 Goal: to start a shell, using a return-
to-libc attack

 Exploit4.c: c program

 Credit: 30%



  

Useful tools

 GDB
 Start: gdb ./example1
 Source: list linenum
 Assembly: disassemble func
 Step: step/stepi
 Memory: x addr
 Variables/registers: print var/reg

 Will give GDB tutorial in PSO this 
week!



  

Warming up

 Understand what is going on
 The assembly code
 The memory(stack)
 The registers
 The variables
 What does LEAVE/RET do
 …



  

Environment Setup

 The OS is running in a virtual machine
 Login

 Connect to the VM
 ssh cs426vm1.cs.purdue.edu

 Tools available
 gcc, make, gdb, vim, emacs



  

Submission

 Deadline is 11:59pm Oct 8th (two weeks 
from Friday)

 Just leave your solution files (including 
answers to questions) in ./exploits of your 
home directory

 .c files should be compiled and ready to 
run without any arguments



  

Team Details

 Email me (twykoff@purdue.edu):
 Who you are working with (both of 

your names)
 What your requested login name is

 If you don't yet have a partner
 Email me and I'll pair you up



  

Other stuff                                (1)

 Exploits codes are short
 Several ways to exploit
 Start early
 Codes from others may *not* work
 Backup files often (outside the virtual 

machine)
 Make your exploits stable



  

Other stuff                                (2)

 Don’t use the machines for other 
purposes

 Updates may be available through 
mailing list

 Have fun



  

Questions?


	CS 526 Lab1
	Task
	Outline
	Memory Layout Overview
	Function Call(1)         example1.c
	Function Call(2)       function frame
	Function Call(3)     what happens?
	Function Call(4)            assembly
	Buffer Overflow          example1b.c
	Example 2                  example2.c
	Example 3                   example3.c
	Example 3                           goal
	Example3                     preparation
	Example3                    exploitation
	Return to lib-c attack
	Target1
	Target3
	Slide 18
	Target4
	Useful tools
	Warming up
	Environment Setup
	Submission
	Slide 24
	Other stuff                                (1)
	Other stuff                                (2)
	Slide 27

