Illinois State University Interlibrary Loan

75011 */75011+*

ILLiad TN

Borrower: IPL

Lending String: "ALJHA JHAMTE MTE
Patron: Thomas, Jacques

Journal Title: Proceedings of the 8th National
Computer Security Conference : 30 September-
3 October 1985, Gaithersburg, MD.

Volume: Issue:
Month/Year: October 1985Pages:

Article Author: National Computer Security
Conference (8th ; 1985 ; National Bureau of
Standards)

Article Title: WE Boebert, RY Kain; A Practical
Alternative to Hierarchical Integrity Policies

imprint: [Washington, D.C.7; U.S. G.P.OJ
1985.

ILL Number: 12750853
12750853

call#: QA76.9.A25 N361985

Location: 5

ARIEL
Charge
Maxcost: 65.00iIFM

Shipping Address:

Purdue University Libraries ILL
Purdue University

504 West State Street

West Lafayette IN 47907-2058

Fax:
Ariel; 128.210.125.135

Borrowing Notes; *Thank you.*

A PRACTICAL ALTERNATIVE To HIERARCHICAL INTEGRITY POLICIES

W.E. Boebert

Honeywell Secure Computing Technology Center
Minneapolis MN
BACKGROUND

The Secure Ada Target

The Secure Ada Target (SAT) project is an
effort to develop a machine which meets and
exceeds the AY level of the Department of
Defense Trusted Computer System Evaluation
Criteria (TCSEC). An overview of the machine
is given in Reference 1.

Enhanced Security Policies

The SAT system design meets the A1
requirements with respect to the mandatory
and discretionary policy requirements, and it
exceeds the A1 level by enforcing an enhanced
mandatory policy whose aim it is to prevent
corruption of sensitive information. Early
versions of the machine incorporated a
variant of the “traditional" hierarchical
integrity policy; detailed analysis showed
the inadequacy of this approach, and an
alternative based on types and domains was
developed.

PROBLEM STATEMENT

TCSEC Requirements

The TCSEC requires that systems at the B2
level of d4ssurance and above demonstrate
conformance to a security policy. The TCSEC
further gives a set of minimum requirements
that an acceptable policy must meet. Briefly
Stated, these requirements are that
Information pe labelled internally with a
Security level, and accesses made by active

18

R.Y. Kain
University of Minnesota
(Consultant to Honeywell)
Minneapolis MN

subjects to information-hoiding objects he
restricted in a manner that prevents
information fronm flowing down in security
level. We shall refer to this policy as the
"compromise policy,” and the security level
used in its policy decisions as the
"compromise level® of objects and subjects.

The TCSEC is silent on the equally important
topic of preventing the corruption of
sensitive information. A modular
implementation of the TCSEC requirements
dictates that it is necessary to impose
proven constraints on information flow other
than those imposed by the mandatory policy.
This implication arises because the TCSEC
requires that exported information be
properly labelled with its compromise level,
A modular implementation of this exportation
process would have separate modules for label
insertion and device contrel.

Practical secure systems also require
constraints on information flow in order to
defend against so-called "virus" attacks, to
demonstrate assured data flow through
cryptographic devices, and to enforce
sophisticated security policies whose aim it
is to prevent aggregation and inference.

First Efforts

An early response to the problems of
information corruption was the development of
“Integrity Policies," several variations of
which are described in Reference 2. In
effect, these policies add a second attribute
to information (integrity level) and impose

access restrictions in order to protect
sensitive information from unauthorized
modification.

INTEGRITY POLICIES

Yarying Integrity Levels

The policies described in Reference 2 fall
into two broad classes. In the first class,
the integrity levels associated with subjects
and objects may change. This class includes
the Low-Hater Mark Palicy for Subjects and
the Low-Water Mark Policy for Objects.

In the Low-Water Mark Policy for Subjects, a
subject may neither modify objects nor send
messages to a subject whose integrity level
is greater than the one the sender currently
has. The current integrity level of a subject
is equal to the lowest integrity level of any
object to which it has been granted observe
access; hence the name “Low-Water Mark.*®
“Execute" access ig ireated as a form of
chserve,

The Low-Water Mark Policy for Objects does
not impose any restrictions on the ability of
subjects to modify objects. Instead, the
current integrity level of an object is set
to the lowest Integrity level of any subject
which has been granted “modify" access to
that object.

Integrity policies in the above class have
seen little, if any, practical use, owing to
the difficulties of administrating them and
the pathological states which they allow
{such as a subject being denied access to
objects it has created.)

Fixed Integrity Levels

The second broad class of integrity policies
includes the Ring Policy and the Strict
Integrity Policy. In these policies, the
integrity levels of both subjects and objects
are fixed. Under the Ring Policy, a

subject may obtain "observe" access to any
object, but may not modify objects nor
communicate with subjects of higher

integrity. The Strict Integrity Policy is
the full formal dual of the compromise policy
defined in the TCSEC. It consists of a Simple
Integrity Condition, which States that a
subject cannot observe objects of lesser
integrity; an Integrity *-property, which
states that a subject cannot modify objects
of higher integrity; and an Invocation
Property, which states that a subject may
only send messages to subjects of higher
integrity.

This second class of integrity policies has
fewer intrinsic difficulties than the first,
and variants have been implemented in
reference monitors.

General Principles

Both classes of integrity policies represent
varying interpretations of the same general
principle: information should only flow fup"
in integrity. In order to avoid excessive
detail, we will offer our critique of, ang
alternative to, the general class of policies
which adhere to this principle. We will call
such policies "hierarchical integrity
policies." This class includes all policies
which assign an attribute called “integrity
level® to information, and which then impose
rules to prevent (to one degree of assurance
or another) information at high integrity
levels fronm being corrupted by information of
low integrity.

Integrity and Compromise

It is tempting to view hierarchical integrity
policies as duals or complements of the
compromise policy mandated by the TCSEC.
While such a relationship can be shown to
exist formally (especially in the case of the
Strict Integrity Policy)}, the relationship
does not exist in the broader sense of intent
and application.

In particular, the nature of g compromise
policy is that controls are imposed on
Programs based upon the context in which they
execute, and not upon the degree of trust
placed in the programs themselves. In

particutar, a compromise policy such as that
mandated by the TCSEC can be shown to prevent
the compromise of information even if the
programs being executed are hostile in their
intent.

Such immunity from hostile programs cannot be
obtained by using integrity policies, If
there were 3 hostile program in the System,
it could simply wait until it was executing
in the context of a high-integrity subject
and then work its damage on high-integrity
information. Under the Low-Water Mark
Policies and the Strict Integrity Policy,
this danger is pbrevented by assigning
Integrity levels to programs and equating
“observe" and "execute" access. In these
policies a high-integrity subject is
therefore bound to executing high-integrity
programs. In the Ring Policy no such
restriction exists, and the policy is
trivially subvertible by Trojan Horse
techniques.

From the above it can be seen that there is
an essential difference between compromise
and integrity: compromise level is more
naturally bound to Subjects and integrity
level is more naturally bound to programs.
Attempts to bing Integrity level to subjects,
as is done in the above policies, should lead
to difficulties ip application. We will show
that such difficulties do in fact exist; they
manifest themselves 45 an excessive need for
the concept called “trust.®

Trust

A "trusted subject” is one which is
Privileged to selectively violate the letter
of a particular policy. The programs
Bxecuted by the subject must be verified to
Insure that the exception does not violate
the intent of the policy. This in turn
Tequires that the intent of the policy be

explicit]y stated; this is often no easy
Matter,

In the case of compromise policies, trusted
f“bJects are those which are permitted to

wWrite down," that is, to cause information

to flow downward ip compromise level. In the

20

case of such subjects, the adherence to the
“higherw policy is demonstrated by showing
that the subject moves a trivial amaunt of
information, that the movement of information
Is audited so that abuses can be detected,
and/or that the Movement takes place at the
instigation of an authorized user (a
so-called “downgrader),

If we follow the pattern of viewing integrity
policies as the formal duals of compromise,
then "integrity truste® is the privilege of
"writing up" in integrity. As with
compromise, we associate trust with "modify"
access in order to simplify the discussion.

The attribute of trust, in the policies under
discussion, is bound to subjects and not te
programs. [t is therefore necessary to prove
that trust can never be abused; that is, that
no hostile program can ever be executed
within the context of a trusted subject. This
in turn requires verification of usually
complex low-level mechanisms which bind
programs to subjects.

It is also necessary to state the intent of
the policy being enforced, and to formulate a
subject-local property which captures that
intent. It is then necessary to verify that
the property is exhibited by all programs
which could be executed in the context of the
trusted subject. The use of trust therefore
greatly complicates the proof process and
reduces the degree of assurance in the
system. It is accordingly a goal of the SAT
effort to reduce the use of trust as much as
possible, and it was thig goal that led us to
question and finally discard the notion of a
hierarchical integrity policy.

CRITIQUE

Assured Pipelines

In this section we will present a critique of
hierarchical integrity policies. We will
consider the shortcomings of such policies in
the context of what we call an "assured
pipeline,® 3 subsystem which is
security-relevant and which must be
encountered by data flowing from a particular

source to a particular destination. Examples
of assured pipelines are labellers and
cryptographic subsystems. 1In Reference 3 we
give an example of a similar subsystem which
does not transform data, but instead
selectively audits requests made to the
reference monitor.

A labeller is a verified subsystem which
converts the security level of an object from
internal form to external form prior to the
export of that object. The most common
instance of a labeller is one which prints
the classification level of a single-level
object at the top and bottom of the pages
when that object is output to a hard-copy
device, A cryptographic subsystem encodes
data in such a way that it may be safely
downgraded and transmitted over an insecure
communications path without effectively
declassifying the information contained
within that data.

From the above discussion, it can be seen
that assured pipetlines represent the most
basic kind of structure which one would wish
to construct and prove secure in a Trusted
Computing Base.

Security of Assured Pipelines

To prove that an assured pipeline is secure
requires the demonstration of three
properties:

1. The transforming subsystem cannot be
bypassed. That is, no hard-copy can be
printed without labels, and no information
can go out on the insecure path in
unencrypted form.

2. The transforms cannot be undone or
modified once done. Data cannot be
intercepted between labelling and printing,
and have the labels removed; data cannot be
intercepted between encryption and
transmission, and have unencrypted
information inserted.

3. The transforms must be correct. The
labeller must insert external labels which
are the proper representation of the internal

label of the object; the cryptographic
subsystem must properly implement the desireq
cryptographic algorithm.

The last property is the only property
amenable to progranm proof techniques; the
first two properties must be demonstrated by
recourse to some global attribute of the
underlying system. We Wwill now show that
enforcement of a hierarchical integrity
policy is a poor candidate for such an
attribute.

Integrity and Assured Pipelines

For simplicity, we shall use the labeller for
hard-copy output in our discussion. Other
labellers and cryptographic subsystems pose
the same problems for hierarchical integrity
policies: only the terminology used in the
example will change.

There are two object types and two modules in
this example of an assured pipeline. The
object types are unlabelled and labelled
data; the modules are the labeller and the
output subsytem. Unlabelled data does not
include the printable classification levels
@t the top and bottom of pages; labelled data
does. The labeller determines the security
level of the object from Its internal label,
locates page boundaries, and inserts the
proper label text. The output module is a
device driver which causes the labelled data
to appear on some appropriate hard-copy
device,

The local security properties which must be
proven of each of the modules are that the
labeller selects the pProper printable label
and puts it in the proper place, and that the
output module moves data to hard copy

without modification to the label text.

The global security properties which must be
Proven of the pipeline are:

1. Only the labeller module produces
labelled data.

2. Labelled data cannot be modified,

3. The output module will accept labelled
data only.

We will now show that attempts to'enforce
these properties using a hierarchical
integrity policy will fnevitably involve the
use of “trust® somewhere in the pipeline.
Note that al} information is at the same
compromise level, so that the mandatory
security policy imposed by the TCSEC is
trivially satisfied.

There are three alternatives to assigning
integrity levels in such a pipeline: the
integrity levels of all data may be equal,
the integrity levels may increase as data
moves toward the output device, and the
integrity levels may decrease as the data
moves down the pipeline.

If labelled and unlabelled data are at the
same integrity level, then no integrity
policy will be able to distinguish between
them. A hostile program will be able tp
remove or modify labels at will between the
labelling and the output steps, and the
output module will not be constrained by
integrity level to outputting only labelled
data.

If labelled data is at a higher integrity
level than unlabelled data (the intuitive
case), then trust must be invoked at each
module in the pipeline, as it is clear that
in such an arrangement information is flowing
"up" in integrity,

The case where labelled data is at a lower
integrity level than unlabelled has the same
Shortcomings a4s the equal integrity level
Case,

Thus the application of hierarchical
Integrity policies to the most basic
Structure of a secure system either fails to
enforce the desired restrictions or requires
an exception from the policy at each step.
e argye that this situation represents an
excellent definition of the word
“Impractical, gng offer an alternative that

A¥0ids these shortcomings and confers other
benef it as well,

22

POLICY ENFORCEMENT IN THE SECURE ADA TARGET

The SAT machine directly implements the
reference monitor mandated by the TCSEC. The
SAT reference monitor system checks every
individual access attempt for consistency
with the security policy being enforced by
the system.

The SAT reference monitor is implemented in
hardware, and resides between the processor,
which generates memory access requests, and
the memory system, which satisfies these
requests. The reference monitor intercepts
illegal access dttempts; an interrupt is
caused when an illegal access is detected.
For "normal® checking, the system aborts the
offending subject, thereby guaranteeing that
ne illegal accesses can be completed and ‘
further that the program cannot obtain much
information regarding the security state of
the system by repeated attempts to make
illegal accesses. (Otherwise, the system's
security state might be used to construct a
covert channel between two subjects.)

The SAT reference monitor is implemented by a
combination of a memory management unit
(MMU), which has conventional rights checking
facilities, and a tagged object processor
(TOP), a new module responsible for the
system's protection state and the enforcement
of that state. In particular, the TOP sets
up the tables that define the access rights
checked by the MMU. For system integrity, it
is also necessary that the TOP be responsible
for resource management and for the integrity
of the internal state of the reference
monitor. One important part of this state is
the global object table {GOT), which contains
a2 description of the security attributes of
all objects within the system. 1In general,
all elements of the system, including users,
security properties, cade, and data, are
objects described within the GOT and managed
by the ToP.

Of major concern are the security attributes
of objects and their use in determining the
access rights to be placed within the MMy
during program execution. The basic SAT
design starts with a minimum set of security

attributes sufficient to satisfy both the
mandatory and discretionary security policy
requirements, which require comparisons
between attributes of the subject in whose
context a program is executing and attributes
of the object to be accessed by that progranm.
Thus security attributes are associated with
both subjects and objects, and the ToP must
make appropriate Ccomparisons to establish
proper access rights in the MMU.

Three security attributes are associated with
subjects and three different attributes are
associated with objects. Both subjects and
objects have security (compromise) levels.
Each subject is performing its function for
some "user,” whose identity is the second
subject security attribute. The
corresponding object attribute is its access
control list (acl), which lists those users
who are allowed access to the object's
contents, along with the maximum access
rights that each designated user is
permitted. The third subject security
attribute is the “domain" of its execution,
which is an encoding of the subsystem of
which the program is currently a part. The
corresponding object security attribute is
the "type" of the object, which is an
encoding of the format of the information
contained within the object.

The process of determining the access rights
to be accorded a particular subject for
access to a particular object uses all of
these three security attributes, as follows.

To enforce the mandatory access policy, the
TOP compares security levels of the subject

and of the object, and computes an initial set

of access rights according to the algorithm
defined in Section 4.1.1.4 of the TCSEC.

To enforce the discretionary access policy,
the TOP checks the acl for the object; the
acl entry that matches the user portion of
the subject's context is compared against the
initial set of access rights from the
mandatory policy computation. Any access

right in the initjal set which does not appear

in the ac} is deleted from the set. The

result is an intermediate set of access
rights.

The third SAT access rights determination
check compares the subject’s domain against
the object's type. Each domain is itself an
cbject, and one of its attributes is a list
of the object types accessible from the
domain and the maximum access rights
permitted from the domain Lo each type.

Conceptua}ly the aggregation of these domain
definition lists constitutes a table, which
we call the Domain Definition Table (DDT). To
make the domain-type check, the TOP consults
the DDT row for the executing domain, finds
the column for the object's type, and
ctompares the resultant entry against the
Intermediate set of access rights. Any right
in the intermediate set which does not appear
in the DDT entry is dropped, and the result
is the final set of access rights which is
transmitted to the MMy,

{Certain domaing have additional, privileged,
roles and may therefore obtain access rights
in excess of those determined from the
mandatory and discretionary checks. A
discussion of this mechanism is beyond the
scope of this paper.)

The above complex process cannot be performed
on every access attempt. On the other hand,
the checks cannot be made far in advance and
saved (in a “capability," for instance), as
such early binding cannot pProvide the access
right revocation implicit in certain acl
changes.

In SAT, the ToP operation load name $pace
table {LNST) evokes the access rights check;
it inserts access 1o a designated object at a
designated segment number in a subjects's
address space, and establishes the correct
maximum access rights for that subject to
that object. The mandatory, discretionary,
and domain rights thecks are performed during
the execution of LNST, and then the
subjects’s MMU table is modified to reflect
Lhe new entry. If the LNST operation is
Proved to conform to the security policy and

i
*

if the MMU is proved to enforce the access
rights set in the NST, the system is thereby
proved to conform to the security policy for
each and every instruction execution.

Domain changing may occur as a side effect of
procedure call. If the called pracedure i
not executable within the caller's domain,
either the call is illegal or a domain change
is necessary to complete the call.
Infermation concerning domain changes is
stored in a Domain Transition Table (DTT),
which is stored as a set of lists associated
with the calling domain. The SAT system
creates new subjects to handle domain
changes, as required. When a call requires a
domain change, SAT suspends the calling
subject and activates the called subject.

The called subject has a different execution
context, name space, and access rights, which
will prevail for the duration of the
procedure’s execution.

In the SAT prototype, the DDT and DIT are set
at the time that a particular version sf the
reference monitor is installed. The number
of types and domains, and the relationship
between them, accordingly remains static
until a newer version of the reference
monitor is installed. Later versions of SAT
will include facilities for the dynamic
creation of types and domains.

Note that the access right computation
lavolves the Successive denial, or "crossing
offy

by the mandatory pelicy. This approach
quarantees that omission of an access right
In a ppT entry for a type, domain pair will
effectively block access to that type by any
program encapsulated in that domain. This
guarantee jgs verifiable by inspection of the
DOT, ang provides assurance that certain
types remain “private" to certain domains.
Note alsp that it is possible to assign types
Lo procedure objects, and place restrictions
o0 "execute" access in the DDT. This last
feature bermits assurance that critical code
is indeed €ncapsulated in protected domains.
In effect, the DDT reflects, and gives
dssurance in, the Structure of the reference

of those access rights initially allowed

24

monitor. This in turn permits a strong
Correspondence to exist between the
organization of the design and the

organization of the proof.

USES OF TYpr ENFORCEMENT

Implementing Integrity Policies

We would like tg begin by observing that our
type enforcement policy subsumes the second
ciass of hierarchical integrity policies,
that is, those in which an unchanged
Integrity level is bound to subjects and
objects.

In order to implement a hierarchical
integrity policy in SAT, it is necessary to
first assign types tg pProcedures based on
their integrity level. The set of procedures
Possessing a given type is isolated into a
distinct domain, which is the only domain
from which these procedures may be executed.

Data objects are then assigned a distinct set
of types, also based on integrity level. It

is then trivial to devise a bDT configuration
which implements the restictions of the Ring

Policy or the Strict Integrity Policy.

For example, let yg dssume that we have three
integrity levels 1,2 and 3. We would then
have three types of procedures, P1, P2, and
P3, (with the corresponding domains) and
three types of cbjects 01, 02, 03. It is
also necessary to have a "gatekeeeper® domain
P4 for use when changes in integrity level
are required.

In order to implement the Strict Integrity

Policy, we need only construct a DDT
configuration as follows:

Object Type: 01 02 03
Domain P1: o/m 0 -0
Domain p2: m o/fm 0
Domain P3: i m o/m
Domain pP4: null null null
(o = observe; m = medify)

T —

Called bDomain: P1 P2 P3 P4

Domain P1: e e e cP4
Domain P2: null 8 e cP4
Domain P3: null null e cP4
Domain p4: cP1 cp2 cP2 e

{e = execute and stay in current domain;
cDestination = change to domain Destination,)

Tables for the Ring Policy may be similarly
constructed. Note that a binding which is
stated in the policy as existing between
integrity levels and subjects is here mapped
onto a binding between, in effect, integrity
tevels and procedures. This mapping is
possible because the policy treats execute
and observe access the same, thereby
establishing a relationship between the
integrity level of the subject and the
integrity level of the Procedure executing in
the context of that subject.

The above argument shows that any set of
restrictions enforceable by the second class
of integrity policies is enforceable by the
type enforcement policy. The first class of
integrity policies, in which integrity levels
of subjects or objects change, may be
dismissed as impractical from the point of
view of performance ang proof.

Having argued that type enforcement cah deal
with any case that a hierarchical integrity
policy can deal with, we proceed tgo the more
interesting cases in which hierarchical
integrity polices must appeal to "trust* in
order to accomodate practical processing
requirements,

Assured Pipelines

We will now show that the assured pipleline
structure can be readily accomodated by the
type enforcement policy. We will show DDT
and DTT configurations based on the following

Types: Unlabelled and Labelled data.
Domains: User, Labeller, and Output.

Unlabelled data is data which has only
internal labels associated with it. Labelled
data is data which ig properly marked on the
top and bottom of each page for output.

Unverified and possibly hostile programs are
encapsulated in the User domain. The
labeller module described in the previous
section on assured pipelines is encapsulated
In the Labeller domain and is verified to
properly translate internal labels to
readable form and place them in the correct
positions in the data. The output moéulé of
the previous assured pipeline description is
encapsulated in the Output domain and is
verified to not tamper with labels. None of
the domains in the example invoke any form of
privilege.

The DDT which enforces the pipeline is as
follows:

Object Type: Unlabelled Labelled
User Domain: o/m null
Labeller.Domain: 0 o/m

Qutput Domain: null 0

{0 = observe; m = modify.)

And the corresponding DTT §s:

Called Domain: User Labeller Output
User Domain: e clabeller nuli
Labeller Domain: null e cOutput
Output Domain null null e

{e = execute and stay in same domain;
cDestination = change to domain Destination.)

Note that not only does the DDT restrict the
data flow, but the DTT restricts the control
flow in such a manner that the pipeline must
be initiated by {possibly hostile) user code
in a proper manner; the Output domain i{s not
callable from the yser domain,

TYPE ENFORCEMENT AND PROOF

Factored Proofs

Assurance, in the final analysis, is based on
human confidence; and confidence comes from
fnsight and understanding., It has
accordingly been a goal of the SAT project
that its proofs of security be accesible tg
human analysis, understanding, and criticism.

This goal has led us to avoid the
machine-generated proofs of previous efforts
In favor of proofs which have an informally
understandable underlying structure;
formalism is used to permit machine-checking
of our results and not as an end in itself,

We use the traditional structure of a
"factored" proof, that is, an argument based
on an orderly presentation of lemmas. The
proof has two purposes. The secondary
Purpose is to convince a skeptical observer
that our system Is secure; the primary
Purpose is to give that observer insight into
the precise meaning we give to the word
"secure."

In order to achieve this goal we must present
4 proof whose organization corresponds in a

+ 50 that for every conclusion we
draw along the way there is a clearly
identified System feature which supports that

Conclusion, In the next section we shall
Sutline Such a proof of our example labej]er
Plpeline.

A Factored Proof of a Labeller

The face that a labeller Is "secure" can be
Plptured in three theorems:

26

Theorem 1: Only labelled information is
output to hard copy.

Theorem 2: Labels are properly inserted prior
to output of labelled information.

Theorem 3: Labels are not modified prior to
output of labelled information,

We now present the lemmas used in oqur proof,
and the manner in which each lemma would
Itself be proven.

Lemma 1: The SAT hardware properly enforces
@ given DDT and pTT configuration. This
lemma is proven as part of the overall proof
of the security of the SAT reference monitor,
and is accordingly "built in" to the SAT
hardware.

Lemma 2: Only the Labeller module can write
to Labelled data. This lemma is proven by
inspection of the DDT configuration given in
the example in the previous section.

Lemma 3: The Gutput module will read nothing
but Labelled data. Again, this Is proven by
fnspection of the same DDT configuration.

Lemma 4: The Labeller module properly
translates internal labels to external form,
and inserts them at the top and bottom of
each page. This lemma is broven by applying
standard program proof techniques to the
labeller pragram. The proof invelves
demonstrating the truth of two relatively
weak assertions: that the Labeller performs a
table look-up properly and that it can find
the top and bottom of a page of hardcopy.

Lemma 5: The Output module does not tamper
With labels. As a practical matter, this
lemma will be proven using informal methods.
This Is because Output modules are typically-
complex and machine-dependent. It is
accordingly difficult to capture their
operation in the semantics of formal
program-proof systems. Modules of this type
are amenable to inspection and comprehensive
testing, especially when it is known (as in
this case) that their inputs come only from

formally verified code and therefore form a
tractable set of test cases.

We now note the correspondence between this
set of lemmas and the organization of the SAT
reference monitor. Lemma 1 is a "hardware
level" lemma, a global property which applies
to all programs which execute on the SAT
hardware, irrespective of their context or
‘construction. Lemmas 2 and 3 are
"structural® or "programming in the large*
lemmas, properties which reflect the modular
decomposition of the SAT reference monitor
but which are not concerned with the
internals of the modules themselves. Lemmas 4
and 5 are “programming in the small" lemmas,
conclusions drawn about the operation of the
modules which are independent of their
context in the system. Thus we argue that
there is a clear intuitive correspondence
between elements of the system and elements
of the proof.

Previous efforts to prove the security of
labellers have generally been restricted to
Lemma 4 and occasionally Lemma 5: that is,
the proof has demonstrated that if the
Labeller is invoked, then it properly labels;
the proof does not demonstrate that the
Labeller must always be invoked. In logical
terms, the proof fails because a necessary
but not a sufficient condition has been
demonstrated; in design terms, the proof
fails because the correctness of a module's
internals has been shown but the correctness
of the structure of the system has not. This
Situation is analogous to proclaiming a
system correct when its modules have all
passed unit test but integration testing has
not yet been performed.

Given the above lemmas, the proof of each
theorem is as follows:

Theorem 1 (Only labelled data goes out)f
Lemma 1 (DDT enforced) and Lemma 2 (Onlf
Labeller writes Labelled) and Lemma 3 (Qutput
only outputs Labelled).

Theorem 2 (Labelled data is correct): Lempg 1
(DDT enforced) and Lemma 2 (0nly Labeller
writes Labelled) and Lemma 4 (Labeller labejg
properiy}.

Theorem 3 (Labelled data is tamperproof);
Lemma 1 (DDT enforced) and Lemma 2 (Only
Labeller writes Labelled) and Lemma § (Outpyy
module is benign.)

SUMMARY

Hierarchical integrity policies have been
shown to be inadequate to enforce the
restrictions on information flow required
practical systems. An alternative policy
based on types and domains has been presentey
which has been shown to subsume both the
practical variations of hierarchical
integrity polices and Cases which such
polices cannot handle without recourse to
exceptions. The alternative is also shown to
support proofs whose structure corresponds in
obvious ways to the structure of the System
being reasoned abouyt.

by

REFERENCES

1. W.E. Boebert, R.Y. Kain, W.D. Young, and
S.A. Hansohn, “Secure Ada Target: Issues,
System Design, and Verification,®

Symposium on Security and Privacy, IEEE,
1985, 176-183,

2. K.J. Biba, "Integrity Considerations for
Secure Computer Systems,” The MITRE
Corporation, Bedford MA, MTR-3153, 30
June 1975,

W.E. Boebert and C.T. Ferguson, ®a
Partial Solution to the Discretionary
Trojan Horse Problem," these proceedings.

ACKNOWLEDGEMENTS
Y NLEVGERERTS

This effort hags been supported by us
Government Contracts MDASD4-82.C-0444 and
MDASO4-84-C-6011,

