Perimeter Defense and Firewalls
Announcements

- There will be a quiz on Wed
- There will be a guest lecture on Friday, by Prof. Chris Clifton
Readings for This Lecture

- Readings
 - Perimeter Security Fundamentals
Elements of Perimeter Defense (Fortified Boundary)

- **Border Routers:**
 - the last router you control before an untrusted network (such as Internet)

- **Firewalls:**
 - a chokepoint device that decide what traffic is to be allowed or denied
 - static packet filters, stateful firewalls, proxies

- **Intrusion detection system**
 - an alarm system that detects malicious events and alerts
 - network-based (NIDS) and host-based (HIDS)
Perimeter (Fortified Boundary)

- Intrusion Prevention Systems
 - provide automatic defense without administrators’ involvements
- Virtual Private Networks
 - protected network session formed across an unprotected channel such as Internet
 - hosts connected through VPN are part of borders
- De-militarized zones (DMZ)
 - small network providing public services (not protected by firewall)
What is a Firewall?

- Device that provides secure connectivity between networks (internal/external; varying levels of trust)
- Used to implement and enforce a security policy for communication between networks
Usage of Firewall

- Controlling inbound communications
 - Prevent vulnerable programs from being exploited

- Controlling outbound communications is generally harder
Common Acceptable Outbound Connections

- SMTP to any address from SMTP mail gateway(s);
- DNS to any address from an internal DNS server to resolve external host names;
- HTTP and HTTPS from an internal proxy server for users to browse web sites;
- NTP to specific time server adds from internal time server(s);
- Any ports required by AV, spam filtering, web filtering or patch management software to appropriate vendor address(es) to pull down updates; and
- Anything else where the business case is documented and signed off by appropriate management.
Routing Filtering

- A router can ensure that source IP address of a packet belongs to the network it is coming from
 - known as network ingress filtering [RFC 2827]
- Example
 - No outbound traffic bears a source IP address not assigned to your network.
 - No outbound traffic bears a private (non-routable) IP address.
 - No inbound traffic bears a source IP address assigned to your network.
 - No inbound traffic bears a private (non-routable) IP address.
Defense in Depth

• Perimeter
 – static packet filter
 – stateful firewall
 – proxy firewall
 – IDS and IPS
 – VPN device

• Internal network
 – Ingress and egress filtering
 – Internal firewalls
 – IDS sensors
Defense in Depth

- Individual Hosts
 - host-centric firewalls
 - anti-virus software
 - configuration management
 - audit

- The human factor

- Why defense in depth, or perimeter defense is not enough?
Why perimeter defense not enough?

- Wireless access points and/or modem connection.
- Network ports accessible to attacker who have physical access.
- Laptops of employees and/or consultants that are also connected to other networks.
- Compromised end hosts through allowed network communications, e.g., drive-by downloads, malicious email attachments, weak passwords.
Types of Firewalls

- Network-based vs. host-based (Personal)
- Hardware vs. Software
- Network layer vs. application layer
Stateless Packet Filters

• Inspecting the "packets"
• Use rules to determine
 – Whether to allow a packet through, drop it, or reject it.
 – use only info in packet (no state kept)
 • source IP, destination IP, source port number, destination port number, TCP or UDP

• Example:
 – no inbound connection to low port
 – outgoing web/mail traffic must go through proxies
More about networking: port numbering

• **TCP connection**
 – Server port uses number less than 1024
 – Client port uses number between 1024 and 16383

• **Permanent assignment**
 – Ports <1024 assigned permanently
 • 20,21 for FTP
 • 23 for Telnet
 • 25 for server SMTP
 • 80 for HTTP

• **Variable use**
 – Ports >1024 must be available for client to make connection
Stateful Firewall

- Why need stateful: a stateless firewall doesn’t know whether a packet belong to an acceptable connection
- Packet decision made in the context of a connection
- If packet is a new connection, check against security policy
- If packet is part of an existing connection, match it up in the state table & update table
 - can be viewed as packet filtering with rules dynamically updated
Proxy Firewalls (Application Layer Firewalls)

- Relay for connections
- Client ↔ Proxy ↔ Server
- Understands specific applications
 - Limited proxies available
 - Proxy ‘impersonates’ both sides of connection
- Resource intensive
 - process per connection
- HTTP proxies may cache web pages
Personal Firewalls

- Running on one PC, controlling network access
 - Windows firewall, iptables (Linux), ZoneAlarm, etc.
- Typically determines network access based on application programs
- Typically block most incoming traffic, harder to define policies for outgoing traffic
- Can be bypassed/disabled if host is compromised
Coming Attractions …

• Network Intrusion Detection and Prevention